| 研究生: |
葉佳元 Chia-Yuan, Yeh |
|---|---|
| 論文名稱: |
不同氣體環境下五環素薄膜成長機制之研究 Pentacene films grown at various gas environment |
| 指導教授: |
周維揚
Chou, wei-yang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程研究所 Institute of Electro-Optical Science and Engineering |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 86 |
| 中文關鍵詞: | 五環素 、有機薄膜電晶體 |
| 外文關鍵詞: | pentacene, organic thin film transistor |
| 相關次數: | 點閱:91 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
我們使用X-ray光譜、原子力顯微鏡來測量與分析利用分子束磊晶儀在不同氣體背景下成長的次微米pentacene薄膜,並將以pentacene為半導體層的有機薄膜電晶體製作在n-type矽基板上。以室溫下成長的pentacene分子當作元件主動層,研究不同氣體環境對元件特性的影響。
透過X-ray光譜分析,可知道對照實驗(不通入任何氣體的高真空環境中)的pentacene分子薄膜具有兩種結晶態「thin-film phase」和「single crystal phase」,由文獻上得知,若兩種結晶態同時存在pentacene分子薄膜中,其元件特性不佳,所以藉著通入氮氣或氬氣,可使在其上成長的pentacene分子只存在一種結晶態,進而得到較佳的元件表現。
實驗中發現,通入各種氣體會產生不同的結晶大小。而通入氮氣的元件和對照實驗相較之下約增加結晶大小50Å左右, 可將元件載子遷移率提升至0.2~0.3 cm2/Vs;通入氫氣的元件則比通入氮氣的結晶約小100Å,載子遷移率則相差80倍。
Submicron thick pentacene films deposited by molecular beam epitaxy were grown at room temperature and characterized by use of X-ray diffraction, atomic force microscopy. Pentacene-based organic thin-film transistors (OTFTs) were fabricated on a n-type silicon substrate. From the analyses of X-ray diffraction, the structure of the highly ordered pentacene films, which deposited at nitrogen environment, includes only a single “thin-film phase”. However, the pentacene film formed at high vacuum environment without injecting any gas includes two phases- a “single-crystal phase” and a “thin-film phase”. In experiments, we found that grain sizes of pentacene films were various with gas environment. Comparison with high vaccum environment, grain size of pentacene film increases 50Å while the pentacene film grows at nitrogen environment. Improved field-effect mobility, in the range 0.2 ~ 0.3 cm2/Vs, was achieved in pentacene-based OTFTs grown at nitrogen environment. The grain size of the pentacene film grown at hydrogen environment is smaller than that deposited at nitrogen environment about 100 Å, so its field-effect mobility is also decreased about 80 times.
[1]陳壽安, 物理雙月刊 ,23(2),312,2001.
[2]H. Shirakawa, C. K. Chiang, C. R. Fincher, Y. W. Park, A. J. Heeger,E. J.Louis, S. C. Gau and A. G. MacDiarmid, Phys. Rev. Lett. 39, 1098, 1977.
[3]D. J. Gundlach, Y. Y. Lin, T. N. Jackson, S. F. Nelson, and D. G. Schlom, IEEE Electron Device Lett. 18, 87, 1997.
[4]H. Sirringhaus, P. J. Brown, R. H. Friend, M. M. Nielsen, K. Bechgaard,B. M. W. Langeveld-Voss, A. J. H. Spiering, R. A. J. Janssen, E. W.Meijer, P. Herwig, and D. M. de Leeuw, Nature 401, 685, 1999.
[5]M. Pope and C. E. Swengber, Electronic Processes in Organic Crystalsand Polymers ,2nd ed., Oxford University Press, Oxford , pp. 337-340, 1999.
[6]D. F. Barbe and C. R. Westgate, J. Phys. Chem. Solids. 31, 2679, 1970.
[7]M. L. Petrova, L. D. Rozenshtein, and Fiz. Tverd. Tela (Sov. Phys.-SolidState) 12, 961, 1970.
[8]F. Ebisawa, T. Kurokawa, and S. Nara, J. Appl. Phys. 54, 3255, 1983.
[9]H. Koezuka, A. Tsumura, and T. Ando, Synth. Met. 18, 699, 1987; A.Tsumura, H. Koezuka, and Y. Ando, Synth. Met. 25, 11, 1988.
[10]M. Ahlskog, J. Paloheimo, H. Stubb and A. Assadi, Synth Met. 65, 77,1994.
[11]C. D. Dimitrakopoulos, S. Purushothaman, J. Kymissis, A. Callegari,and J. M. Shaw, Science 283, 5403, 1999.
[12]P. Dyreklev, G. Gustafassou, O. Inganas, and H. Stubb, Solid State Commun. 82, 317, 1992.
[13]歐育森,”金氧半場效電晶體之熱載子傳輸與負偏壓溫度效應之探討”,國立成大微電子所碩士論文, 2003.
[14]L. E. Alexander, X-ray diffraction methods in polymer science, Weily, New York, p. 429, 1969.
[15]M. Kasaya, H. Tabata, and T. Kawai, T. Surf. Sci. 400, 367, 1998.
[16]Zu Heringdorf, Frank.–J. Meyer, M. C. Reuter, and R. M. Tromp, Nature 412, 517, 2001.
[17]C. D. Dimitrakopoulos, A. R. Brown, and A. Pomp, J. Appl. Phys. 80, 2501, 1996.
[18]H. Sirringhaus, N. Tessler and R. H. Friend: Science 280 (1998) 1741.
[19]Ch. Kloc, P.G. Simpkins, T. Siegrist and R. A. Laudise: J. Cryst. Growth 182 (1997) 416.
[20]J. H. Schon, Ch. Kloc, R. A. Laudise and B. Batlogg: Phys. Rev. B 58 (1998) 12952.
[21]楊中諺, 奈米通訊第十一卷,第一期.
[22]D. Knipp et al. / Journal of Non-Crystalline Solids 299-302 (2002) 1042-1046.