| 研究生: |
吳稚中 Wu, Chin-chung |
|---|---|
| 論文名稱: |
土石流產生之地聲與空氣次聲特性之比較 Comparison of the Ground Vibration and Air-Born Infrasound Produced by Debris Flows |
| 指導教授: |
黃清哲
Huang, Ching-jer |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 137 |
| 中文關鍵詞: | 地聲檢知器 、麥克風 、衰減 、地聲 |
| 外文關鍵詞: | microphone, underground sound, airborne sound, decay, geophone |
| 相關次數: | 點閱:77 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究係於水土保持局建置之華山土石流觀測站,分別以地聲檢知器(Geophone)及麥克風(Microphone)量測重量不同的石塊撞擊河床時所產生之地聲訊號及聲音訊號,再經由快速傅立葉轉換(FFT)及Gabor轉換分析所測得之時域訊號,以求得地聲及聲音訊號的頻率域訊號及時間-頻率訊號。實驗結果顯示,地聲及聲音訊號的頻率範圍介於10Hz~150Hz之間,隨著石頭重量的增加,地聲及聲音訊號的頻率也將隨之降低。地聲訊號的主要尖峰頻率值均在聲音訊號的頻率域中顯現,但地聲訊號在高頻區域較容易衰減,因此在訊號頻率特性的顯現上,並沒有聲音訊號完整。此外,本研究利用實驗時之氣候條件,包括:溫度及溼度,代入聲音能量在大氣中的理論衰減計算後,再和實驗結果的衰減做比較。發現當空氣中的濕度高時聲音能量的衰減相當小,且當訊號的頻率值越低時,聲音能量的衰減也將隨之變小。
In this study experiments were carried out to investigate the difference between the airborne sound and the underground sound (ground vibration) produced by the rock motions on a channel bed near the Huashan Debris Flow Monitoring Station, established by the Soil and Water Conservation Bureau, Taiwan. The airborne and underground sounds were collected simultaneously by three microphones and three geophones, respectively, at the same locations. The sound signals were analyzed using both the Fast Fourier Transform (FFT) and the Gabor transform to represent the signals in both the frequency and time-frequency domains. The experimental data show that the frequency of both the airborne and underground sounds produced by the impact of the rock against the channel bed ranges between 10 and 150 Hz and the peak frequency of the signals decreases as the weight of the stone increases. Furthermore, the higher frequency band of the underground sounds decays much faster than that of the airborne sounds. The spatial decay rate of the airborne sounds was also determined and compared with the values which were estimated based on the available theory. The spatial decay rate of the airborne sounds decreases as the frequency of the sound decreases and the humidity of the air increases.
1. Arattano, M., “On debris flow front evolution along a torrent,” Phy. Chem. Earth (B), Vol. 25, No. 9, pp. 733-740, 2000.
2. Arattano, M., “Monitoring the presence of the debris-flow front and its velocity through ground vibration detectors,’’ The Third Int. Conf. on Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assessment, Switzerland, pp.719-730, 2003.
3. Arattano, M. and Marchi, L., “Measurements of debris flow velocity through cross-correlation of instrumentation data,” Natural Hazards and Earth System Sciences, Vol. 5, pp.137-142, 2005.
4. Bedard, A.J. Jr. , “Infrasonic and Near Infrasonic Atmospheric Sounding and Imaging,” NOAA/ERL/Environmental Technology Laboratory, 1996 .
5. Cooley, J. W. and Tukey J. W., “An algorithm for machine calculation of complex Fourier series,” Math. Computation, Vol. 19, pp.297-301, 1965.
6. David, T. Blackstock, “Fundamentals of Physical Acoustics. Willy Interscience, Canada,” 2000.
7. Friedlander, B. and Porat, B., “Detection of transient signals by the Gabor representation,” IEEE Trans. Acoust. Speech Signal Process, Vol. 37, pp.169-180, 1989.
8. Friedlander, B. and Zeira, A., “Over-sampled Gabor representation for transient signals,” IEEE Trans. Signal Process, Vol. 43, pp. 2088-2094, 1995.
9. Gabor, D., “Theory of communication,” J. Inst. Electr. Eng., Vol. 93, pp. 429-459, 1946.
10. Genevois, R., Galgaro, A., and Tecca, P. R., “Image Analysis for Debris Flow Properties Estimation,” Phys. Chem. Earth (C), Vol. 26, No. 9, pp. 623-631, 2001.
11. Huang, C.J., Shieh, C.L., and Yin, H.Y., “Laboratory study of the underground sound generated by debris flows,” J. Geophys. Res. – Earth Surface, Vol. 109, F01008, doi:10.1029/2003JF000048, 2004.
12. Huang, C.J., Yin, H.Y., Chen, C.Y., Yeh, C.H., Wang, C.L., “Ground vibrations produced by rock motions and debris flows,” J. Geophys. Res., Vol. 112, F02014, doi:10.1029/2005JF000437 , 2007.
13. Itakura, Y., Taniguchi, S., Miyamoto, K. and Shimokawa, E., “Acoustic sensor for detecting the occurrence of debris flows,” Variability in Stream Erosion and Sediment Transport, 1994.
14. Itakura, Y., Kamei, N., Takahama, J.I., and Y. Nowa, Y., “Real time estimation of discharge of debris flow by an acoustic sensor,” 14th IMEKO World Congress, New Measurements – Challenges and Visions, Tampere, Finland, Vol. XA, pp. 127-131, 1997 a.
15. Itakura, Y., Koga, Y., Takahama, J.I., and Nowa, Y., “Acoustic detection sensor for debris flow,” The First Int. Conf. on Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assessment, San Francisco, U.S.A., pp. 747-756, 1997 b.
16. Johnson, J. B., “Generation and propagation of infrasonic airwaves from volcanic explosions,” Journal of volcanology and Geothermal Research, Vol. 121, pp.1-14, 2003.
17. Johnson, J. B. and R. C. Aster , “Relative partitioning of acoustic and seismic energy during Strombolian eruptions,” Journal of Volcanology and Geothermal Research, Vol. 148, pp.334-354 , 2005.
18. Okuda, S., Okunishi, K., and Suwa, H., “Observation of debris flow at Kamikamihori Valley of Mt. Yakedade,” Excursion Guide-book of the 3rd Meeting of IGU commission on field experiment in geomorphology, Disaster Prevention Research Institute, Kyoto University, Japan, pp. 127-130, 1980.
19. Stearns, S. D. and David, R. A., Signal Processing Algorithms in Matlab, Prentice Hall P. T. R., Upper Saddle River, New Jersey, pp. 211-213, 1996.
20. Suwa, H., Yamakoshi, T., and K. Sato, K., “Relationship between debris-flow discharge and ground vibration,” The Second Int. Conf. on Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assessment, Rotterdam, pp. 311-318, 2000.
21. Stump, B., M.S. Jun, C. Hayward, J.S. Jeon, I.Y. Che, S.M. House, and T.S. Kim, “Assessment of Seismic and Infrasound Signal in Korea with Ground Truth,” 23 Seismic Research Review: Worldwide Monitoring of Nuclear Explosions, pp.431-439, 2001.
22. Yin, H. Y., “Studying and monitoring the ground vibration generated by debris flows,” PhD Thesis, Department of Hydraulic and Ocean Engineering, National Cheng Kung University, Taiwan, 2005.
23. 黃清哲 (2004), “以地聲檢知器探測土石流發生之研究(第一年)-成果報告,”行政院農委會水保局計劃,計劃編號:SWCB-93-130(296 pages)。
24. 黃清哲 (2005), “以地聲檢知器探測土石流發生之研究(第二年)-成果報告,”行政院農委會水保局計劃,計劃編號:SWCB-94-104(283 pages)。
25. 黃清哲 (2006), “以地聲檢知器探測土石流發生之研究(第三年)-成果報告,”行政院農委會水保局計劃,計劃編號:SWCB-93-130(244 pages)。
26. 黃清哲、謝正倫、鄭友誠、尹孝元、許世盛、蔡玫諼 (2004), “土石流地聲特性之實驗研究,” 中國土木水利工程學刊,第十六卷第一期,53-63頁。
27. 黃清哲、葉智惠、尹孝元、王晉倫 (2005), “地聲探測器應用於土石流監測之研究,”中華水土保持學報,第36卷第1期,39-53頁。
28. 黃清哲、張友龍、章書成 (2005), “土石流運動時之次聲特性監測及分析,” 中華水土保持學報,第36卷第3期, 233-238頁。
29. 尹孝元、黃清哲、連惠邦、李秉乾、周天潁、王晉倫(2006),”自動化土石流觀測系統之發展及應用,” 中華水土保持學報,第37卷第2期,91-109頁。
30. 尹孝元、連榮吉、黃清哲、李秉乾(2006),”台灣地區土石流現場觀測技術發展現況,” 地工技術,第110期(土石流防治專輯),65-76頁。
31. 黃清哲、張順添、尹孝元、葉智惠、王晉倫(2007),”2004年七月二日神木村土石流地聲特性之分析,” 中華水土保持學報,第38卷第1期, 1-16頁。
32. 黃清哲、孫坤池、陳潮億、尹孝元(2007),”不同型態土石流地聲特性之實驗研究,” 中華水土保持學報,第39卷第1期, 1-16頁。