簡易檢索 / 詳目顯示

研究生: 王美雲
Wang, Mei-Yun
論文名稱: 以菌種突變與混合菌相策略進行生物褪色動力學之研究
Kinetic Studies of Microbial Decolorization with Mutagenesis and Mixed-culture Strategies
指導教授: 張嘉修
Chang, Jo-Shu
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 117
中文關鍵詞: 混合菌相突變大腸桿菌生物褪色偶氮染料
外文關鍵詞: Azo dye, Microbial decolorization, Mutation, Escherichia coli, mixed-culture
相關次數: 點閱:100下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究是以菌種突變策略和混合菌相系統來進行廢水生物褪色之動力學研究,先利用紫外光與化學突變法進行菌種之基因突變,並篩選具有較佳褪色效率的菌種;接著探討所篩得的突變菌種在不同溫度、溶氧、染料濃度下的生長情形,進而研究各菌種在不同褪色條件下的褪色能力表現。由於工業廢水的環境是屬於混合相,也就是具有多數菌種共存的混合菌相和摻雜眾多種類的混合染料,故本研究比較混合菌相對染料的褪色能力以及探討各菌種對混合染料之褪色效果,期能評估菌種實際應用於染整廢水生物處理之可行性。在染料褪色能力方面,突變菌株Escherichia coli UVT1不管是對Reactive Red 22 (RR22)或是Reactive Black B (RBB)所具有的褪色能力均優於其它突變株(E. Coli UV68)與原始菌株(E. coli DH5?),其對200 mg/L的RR22與RBB之比褪色速率(SDR)分別為6.15與7.77 mg-dye/g-cell/h。褪色動力學方面,在不同染料濃度褪色實驗中,E. coli UVT1在高染料濃度下,具有較高的比褪色速率(SDR=16.83 mg-dye/g-cell/h),且實驗數據依照Monod-type kinetic model原理算出各菌種的νp (mg-dye/g-cell/h)和Kp (mg/L)值,其中νp表示菌種的最大比褪色速率,Kp為νp達一半時的基質濃度,由實驗結果看來,經突變後各菌種的νp皆很接近,但突變菌種E. coli UVT1明顯具有較小的Kp值(712.09 mg/L)。由不同褪色溫度下的實驗結果看來,突變菌種E. coli UV68和E. coli UVT1在28℃時有最佳的褪色效果。在溶氧實驗方面,由靜置(0 rpm)、震盪(200 rpm)和通N2的實驗中發現,缺氧狀態(靜置)最有利於褪色反應。在褪色基質方面,當培養基質中有葡萄糖的存在時,在批次褪色過程中會有酸性代謝物的產生,導致pH值的下降,造成菌種生長和褪色的抑制。在混合相褪色方面,E. coli UVT1對混合染料的去除具有最佳的效果,而以三株菌種形成之混合菌相對染料的褪色效果優於單一菌相之效果,顯示混合菌種在褪色過程中,有基質或是代謝物的互補和增強褪色作用之存在。將混合菌種對混合染料的褪色結果以方程式 描述,發現數學模式模擬結果與實驗數據差異不大。

    Microbial decolorization kinetics was studied using mutagenesis and mixed culture strategies. Mutation of a mother strain was conducted using ultraviolet method and chemical method. The mutants possess excellent decolorization activity were selected. The growth characteristics of the selected mutant strains were investigated under different temperatures, dissolved oxygen, and at the presence or absence of dye. The decolorization capability of the mutants was also examined under different conditions. Because industrial wastewater is a mixed system containing a microbial consortium and multiple substrate (dye) components, to assess the feasibility of the mutant strains in practical applications, this study aimed to reveal the decolorization activity of mixed cultures when multiple dyes were present. Regardless of Reactive Red 22 (RR22) or Reactive Black B (RBB), Escherichia coli UVT1 possessed better decolorization activity than that of the other mutagenesis strain (E. coli UV68) and original strain (E. coli DH5?). The specific decolorization rates (SDR) of E. coli UVT1 for RR22 and RBB (both at 200 mg/L) were 6.15 and 7.77 mg-dye/g-cell/h, respectively. E. coli UVT1 appeared to have higher decolorization rate (SDR = 16.83 mg-dye/g-cell/h) at higher dye concentrations. The dependence of decolorization rate on dye concentration can be simulated by a Monod-type kinetic model and the estimated value of kinetic constant νp (mg-dye/g-cell/h) and Kp (mg/L) shows that the three strains had similar maximum specific decolorization rate (νp), while E. coli UVT1 had the lowest Kp value. The mutant strains have the best decolorization rates at 28oC and under anaerobic conditions. The presence of glucose strongly inhibited the decolorization due to accumulation of acidic metabolites to cause decrease in pH. E. coli UVT1 was most effective in color removal of the mixed-dye systems. The mixed cultures of E. coli UV1, UV68 and DH5? exhibited better decolorization performance than that of each single strain. It is though that metabolite stimulation or substrate complementation may be the cause of the enhanced decolorization in mixed cultures. The decolorization performance of mixed cultures on mixed dyes can be closely described by the equation.

    中文摘要…………………………………………………………………3 Abstract…………………………………………………………………5 致謝………………………………………………………………………7 目錄………………………………………………………………………8 表目錄……………………………………………………………………13 圖目錄……………………………………………………………………15 符號………………………………………………………………………19 第一章序論………………………………………………………………21 1-1 前言………………………………………………………………21 1-2 研究動機與目的…………………………………………………22 第二章文獻回顧與原理…………………………………………………23 2-1 水污染與廢水的水質指標………………………………………23 2-2 染料………………………………………………………………25 2-2-1 染料的簡介……………………………………………………25 2-2-2 染料的發色學說………………………………………………26 2-2-3 偶氮染料………………………………………………………27 2-2-4 偶氮染料Reactive Red 22和Reactive Black B.的化學結構……28  2-3 廢水中色度的去除………………………………………………28 2-3-1 物理法…………………………………………………………29 2-3-2 化學法…………………………………………………………29 2-3-3 生物處理法……………………………………………………30  2-4 偶氮還原酵素去除色度機制……………………………………32  2-5 突變方法…………………………………………………………33 2-5-1 突變原因………………………………………………………33 2-5-2 造成突變的作用方式…………………………………………34 2-5-3 突變方法………………………………………………………36 第三章實驗材料與方法…………………………………………………38 3-1 藥品………………………………………………………………38 3-2 實驗儀器…………………………………………………………39 3-3 突變實驗方法……………………………………………………40 3-4 菌種來源、培養與細胞濃度的測定……………………………41 3-4-1 菌種來源與培養………………………………………………41 3-4-2 菌種細胞濃度的測定…………………………………………42 3-5 染料及染料濃度的測定…………………………………………42 3-6 混合染料的測定…………………………………………………44 3-7 實驗架構…………………………………………………………46 3-8 菌種生長條件的測試……………………………………………48 3-9 單一菌種的褪色實驗……………………………………………48 3-9-1 菌種對不同染料種類的褪色實驗……………………………48 3-9-2 菌種對不同溫度的褪色實驗…………………………………49 3-9-3 菌種對不同Reactive Red 22染料濃度的褪色實驗………49 3-9-4 菌種對不同褪色培養基下的褪色實驗……………………49 3-9-5 菌種對不同溶氧情況下的褪色實驗…………………………50 3-9-6 菌種對不同混合比例的混合染料的褪色實驗………………50 3-10 單一染料對不同混合比例的混合菌相的褪色實驗…………51 3-11 混合菌相對混合染料的褪色實驗……………………………52 3-12 菌種吸附褪色實驗……………………………………………52 3-12-1 以滅菌處理後菌株之染料吸附實驗………………………53 3-12-2 以化學法處理後菌株之染料吸附實驗……………………53 3-13 在醱酵槽中進行褪色菌之生產與染料褪色實驗……………54 3-14 生物褪色之穩定性實驗………………………………………55 第四章結果與討論………………………………………………………55 4-1 突變實驗…………………………………………………………55 4-2 菌種生長情形……………………………………………………57 4-2-1 在不同生長溫度條件下靜置與震盪的生長之比較…………57 4-2-2 在含染料的情況於不同生長溫度條件下靜置與震盪的生長之比較57 4-3 單一菌種對單一染料的褪色比較………………………………65 4-4 單一菌種在不同溫度的褪色比較………………………………69 4-5 單一菌種在不同染料濃度的褪色比較…………………………69 4-6 單一菌種在不同褪色基質的褪色比較…………………………77 4-7 單一菌種在不同溶氧的褪色比較………………………………78 4-8 單一菌種對不同比例混合染料的褪色比較……………………82 4-9 混合菌種對單一染料的褪色比較………………………………85 4-10 混合菌種對混合染料的褪色比較……………………………92 4-11 單一菌種對染料的吸附褪色測試……………………………93 4-12 在醱酵槽中進行褪色菌之生產與染料色……………………94 4-13 生物褪色之穩定性實驗………………………………………95 第五章 結論……………………………………………………………104 參考文獻………………………………………………………………106 附錄……………………………………………………………………111 附錄一? E. coli UV68、E. coli UVT1和E. coli DH5α的SEM圖…111 附錄二 生長與褪色各參數之計算方法………………………………113 附錄三 染料褪色實驗之UV圖…………………………………………114 附錄四 褪色實驗之再現性測試………………………………………116 自述…………………………………………………………117

    1.Brown B. J. and Carlton B. C., Methods for General and Molecular Bacteriology, 299-315, 1994.

    2.Banat, I. M., Nigam, P., Singh, D., and Marchant, R., Microbial decolorization of textile-dye-containing effluent, A review. Biores. Technol. ,58, pp. 217-227, 1996.

    3.Chang J-S and Kuo T-S, Kinetics of bacterial decolorization of azo dye with Escherichia coli NO3. Bioresource Technol. ,75, pp.107-111, 2000.

    4.Chang J-S and Lin Y-C, Fed-batch bioreactor strategies for microbial decolorization of azo dye using a Pseudomonas luteola strain. Biotechnol. Progr., 16 , pp.979 – 985, 2000.

    5.Chang J-S, Kuo T-S, Chao Y-P, Ho J-Y and Lin P-J, Azo dye decolorization with a mutant Escherichia coli strain. Biotechnol. Lett. , 22 , pp. 807-812, 2000.

    6.Chang J-S and Lin C-Y, Decolorization of an azo dye with recombinant Escherichia coli strain harboring azo-dye-decolorizing determinants from Rhodoccocus sp. Biotechnol. Lett. , 23 , pp.631-636, 2001.

    7.Chang, J-S, Chou, C., Lin, Y.-C., Ho, J.-Y., Lin, P.-J. and Hu, T. L. Kinetic characteristics of bacterial azo-dye decolorization by Pseudomonas luteola, Water Research, 35, No. 12, pp. 2841-2850, 2001.

    8.Chen K-C, Huang W-T, and Houng J-Y, Microbial decolorization of azo dyes by Proteus mirabilis,Indus. Microbiol. & Biotechnol., 23, pp. 686-690, 1999.

    9.Chung, K. T., Fulk, G. E., and Egan, M., Reduction of azo dyes by intestinal anaerobes, Appl. Environ. Microbiol., 35, pp.558, 1978.

    10.Chung, K. T. and Stevens, S. E. , Jr., Degradation of azo dyes by environmental microorganisms and helminths. Environ. Toxicol.Chem., 12, pp.2121-2132, 1993.

    11.Davis, R. J., Gainer, J. L., O’Neal, G., and Wu, I.-W., Photocatalytic decolorization of wastewater dyes. Wat. Environ. Res., 66, pp. 50-53, 1994.

    12.Flores, E. R., Luijten, M., Donlon, B. A., Lettinga, G., and Field, J. A., Complete biodegradation of the azo dye azodisalicylate under anaerobic conditions. Environ. Sci. Technol., 31, 2098-2103, 1997.

    13.Glenn, J. K., and Gold, M. H., Decolorization of several polymeric dyes by the ligin-degrading Basidiomycete Phanerochaete chrysosporium, Appl. Environ. Microbiol., 45, pp. 1741-1747, 1983.

    14.Gregory, High-Technology Application of Organic Colorants, Plenum Press, pp.150-180, 1991.

    15.Jinqi, L. and Houtian, P. L., Aerobic biodegradation of azo dyes by algae. Environ. Poll., 75, pp. 273-278, 1992.

    16.Morita, M., Ito, R., Kamidate, T. and Watanabe, H., Kinetics of peroxidase catalyzed decolorization of Orange Ⅱ with hydrogen peroxide. Textile Research Journal, 66(7), 470, 1996.

    17.Pagga, U. and Taeger, K., Development of a method for adsorption of dyestuffs on actived sludge, Wat. Res, 28(5), 1051, 1994.

    18.Sheng, H. and Peng, C. F., Treatment of textile wastewater by electrochemical method. Wat. Res , 28, pp. 277-282, 1994.

    19.Seshadri S., Bishop P. L. and Agha A. M., Anaerobic/aerobic treatment of selected azo dyes in wastewater, Waste Manag., 14, No. 2, pp.127-137, 1994.

    20.Strickland, A. F., and Perkins, W. S., Decolorization of continuous dyeing wastewater by ozanation. Textile Chemist and Colorist, 27(5), 11, 1995.

    21.Slokar, Y. M. & Marechal, A. Majcen Le, Methods of decolorization of textile wastewater, Dyes and Pigments, 37(4), pp. 335-356, 1998.

    22.Waring D. R. and D Halls, The Chemistry and Application of Dye, Plenum Press, London, UK, 136-157, 1990.

    23.Yang, F. and Yu, J., Development of a bioreactor system using an immobilized white rot fungus for decolorization, partⅡ: Continuous decolorization tests, actived sludge, Wat. Res., 28, pp. 1051-1057, 1996.

    24.Zimmermann, T., Kulla, H. G., Leisinger, T., Properties of purified Orange Ⅱ azoreductase, the enzyme initiating azo dye degradation by Pseudomonas KF46, Eur. J. Biochem., 129, pp. 197-203, 1982.

    25.Zhang, F.-M, Knapp, J, S,m and Tapley, K. N., Development of bioreactor systems for decolorization of Orange Ⅱ using white rot fungus, Enzyme Mcrob. Technol., V 24, pp. 48-53, 1999.

    26.宋欣真、鄭仁川,台灣地區染整業廢水污染防治現況,工業污染防治,第49期,第27-46頁,1994.

    27.呂世宗,『台灣省染整工廠廢水解決方案之研究』,工業污染防治,第三卷,第40-46頁,1984.

    28.林永勝,生長與染料褪色過程代謝產物促進染料生物褪色之探討,碩士論文,逢甲大學化學工程研究所,2002.

    29.林佳渝,以基因重組技術建構染料廢水褪色菌種,碩士論文,逢甲大學化學工程研究所,2001.

    30.林毓智,偶氮染料微生物褪色之生物反應器操作策略,碩士論文,逢甲大學化學工程研究所,1999.

    31.林毓智、周劍、張嘉修、胡苔莉,以Pseudomonas luteola進行染料生物褪色之動力學研究,第二十二屆廢水處理技術研討會論文集,中華民國環境工程學會,第803-809頁,1997.

    32.邱永亮譯,染料之合成與特性、徐氏基金會出版、第一章,第1-13頁,1987

    33.邱永亮譯,染料化學、徐氏基金會出版、第二冊,第三章,第84-85頁,1987.

    34.郭泰興,以基因改殖大腸桿菌進行偶氮染料褪色,碩士論文,逢甲大學化學工程研究所,2000.

    35.郭泰興、郭承翔、葉茂淞、鍾敏愫、林啟陽、何俊穎、林屏杰、張嘉修,基因重組大腸桿菌之染料褪色動力學研究,第二十四屆廢水處理技術研討會論文集,中華民國環境工程學會,第547-552頁,1999.

    36.康世芳,我國染整廢水問題與技術需求,經濟部中小企業處染整業污染防治講習會,台北市,1990.

    37.徐永錢、顏昭錫、黃杏釧,染整製程廢水之混凝褪色,第二十一屆廢水處理技術研討會論文集,中華民國環境工程學會,第547頁,1996.

    38.陳水樹,反應性染料之棉染色問題點,染化雜誌,第34期,第38-46頁,1987.

    39.陳姍玗,偶氮染料褪色程序之開發與生態工程之探討,碩士論文,逢甲大學化學工程研究所,2001.

    40.游宏瑜,以高細胞密度饋料批次(Fed-batch)生物反應器進行廢水之色度去除,碩士論文,逢甲大學化學工程研究所,2001.

    41.張嘉修,”微生物之脫色機制在去除廢水色度之應用”,生物產業,第十一卷,第 21-33頁,2000.

    42.張嘉修,”微生物技術在廢水處理之應用”,化工技術,第十九卷,第二期,第 200-227頁,2001.

    43.劉靜宜、汪永璞、彭安、徐瑞薇、周定,環境工程學、科技圖書出版,第二章 水污染防治工程、第14-103頁,1998.

    44.盧鵬企、林尚明、趙豫州、葉逸彥、嚴建國,碳還偶氮行染料擴散熱轉移染料之合成研究,華岡紡織期刊、第七卷、第一期、第89-96頁,1999.

    45.蘇遠志,應用微生物學,華相園出版社,台北市,第338-346頁,1999

    46.環保署(86)檢字第79159號NIEA W223.50B水中真色色度的測量方法-ADMI. (1997)

    下載圖示 校內:立即公開
    校外:2003-06-23公開
    QR CODE