簡易檢索 / 詳目顯示

研究生: 陳韋林
Chen, Wei-Lin
論文名稱: 不對稱結構雙陽離子液體及環胺類離子液體的合成及結構之改變對物理性質的影響之探討
Synthesis and physicochemical characterization of asymmetric dicationic ionic liquids and cyclic ammonium based ionic liquids
指導教授: 孫亦文
Sun, I-Wen
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 158
中文關鍵詞: 雙陽離子離子液體環胺類離子液體黏度密度導電度擴散係數
外文關鍵詞: dicationic ionic liquids, cyclic ammonium-based ionic liquids, viscosity, density, conductivity, diffusion coefficient
相關次數: 點閱:73下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗中總共合成了25種離子液體,其中18種為不對稱雙陽離子離子液體(dicationic ionic liquids),7種為環胺類離子液體(cyclic ammonium based ionic liquids),雙陽離子離子液體的組成主要是由一長碳鏈兩邊接上不同的四級胺鹽所構成的陽離子,結構有甲基咪唑(1-methylimidazole)或乙烯咪唑(1-vinylimidazole)搭配吡咯啶(pyrrolidine)、六圓環的吡啶 (piperidine)、三乙胺(triethylamine)、嗎啉 (morpholine)、吡啶系列(pyridine)所形成不同的陽離子,而陰離子的部分有TFSI (bis(trifluoromethylsulfonyl)imide)和FSI (bis(fluorosulfonyl)imide)兩種;環胺類離子液體的基本結構有六圓環的吡啶 (piperidine)、嗎啉 (morpholine)及七圓環的氮雜環庚烷(azepane)來形成不同的陽離子,而陰離子的部分有TFSI (bis(trifluoromethylsulfonyl)imide)和FSI (bis(fluorosulfonyl)imide)兩種。
    雙陽離子離子液體及環胺類離子液體在合成出來後,以1H-NMR確定其結構,在變溫條件(雙陽離子:303K~353K,環胺類:343K~353K
    )下測量其黏度、密度、導電度的改變,並探討陰陽離子的改變對其物理性質的影響,也利用核磁共振(PGSE-NMR)的技術來量測雙陽離子離子液體陰陽離子在變溫條件下的擴散係數,對離子液體的物理性質探討其庫倫靜電力、氫鍵作用力、極性效應及凡得瓦爾力等分子間作用力的影響。
    從實驗結果可以知道,隨著溫度的上升,其離子液體的黏度及密度會隨之下降,而導電度和擴散係數會隨之上升,密度方面以擁有平面構形的pyridine系列有較大的密度,而morpholine因其環中帶有電負度較大的氧原子能與碳原子形成極性鍵因而使其與陰離子有較大的偶極-偶極作用力所以在黏度上有高於其他離子液體的現象,導電度以及擴散係數的部分,受到黏度效應以及作用力影響,趨勢會與黏度互成反比,而陰離子為FSI的離子液體在其物理性質上與TFSI的離子液體比起來,有黏度、密度降低與導電度、擴散係數提高的效果。

    Twenty-five ionic liquids are synthesized in this research, including eighteen asymmetric dicationic ionic liquids and seven cyclic ammonium-based ionic liquids.
    The cations of asymmetric dicationic ionic liquids are connected by alkyl chain. The cations are based on 1-methylimidazolium, 1-vinylimidazolium, pyrrolidinium, piperidinium, triethylaminium, morpholinium, and pyridinium. The anions are based on bis(trifluoromethylsulfonyl)imide and bis(fluorosulfonyl)imide.
    Moreover, the cations of cyclic ammonium based ionic liquids are spiro structure. The cations are based on piperidinium, morpholinium and azepanium. The anions contain bis(trifluoromethylsulfonyl)imide and bis(fluorosulfonyl)imide.
    The structures of ionic liquids are identified by 1H-NMR. In order to realize the structural relationship of cations and anions in ionic liquids, we measured the physicochemical properties, such as density, viscosity, and specific conductivity of these ionic liquids at variable temperatures. Furthermore, the self-diffusion coefficients of cation and anion in these asymmetric dicationic ionic liquids were studied using pulsed gradient spin-echo NMR technique. The possible effects of the physicochemical properties are derived from the intermolecular interactions, coulomb interaction, hydrogen bonding, polarizability effects, and van der Waals interactions.
    The results indicate that viscosity, density, specific conductivity, and self-diffusion are different at various temperatures. Viscosity and density of ionic liquids decrease with increasing temperature. However, specific conductivity and self-diffusion increase with increasing temperature.
    The pyridinium-based ionic liquids show higher density than other ILs owing to the pyridinium unit contains aromatic ring structure. The morpholinium based ionic liquids exhibit higher viscosity than other ILs, this can be attributed to high polarity of oxygen atom in the morpholinium ring. Compare with the tendency of viscosity of these ionic liquids, the specific conductivity and self-difussion coefficient show inverse proportion versus viscosity.
    When the anions of ILs change from bis(trifluoromethylsulfonyl)imide to bis(fluorosulfonyl)imide, the viscosity and density of ILs decrease. However, the specific conductivity and self-diffusion of these ILs increase.

    摘要----------------------I Abstract-----------------III 誌謝----------------------V 目錄----------------------VI 表目錄--------------------IX 圖目錄--------------------X 第一章 序論----------------1 1-1 前言------------------1 1-2 離子液體的簡介----------1 1-3 離子液體的發展----------2 1-4 離子液體的特性----------3 1-5 雙陽離子離子液體---------3 1-6 雙陽離子離子液體的應用----4 1-7 研究動機---------------6 第二章 理論背景-------------8 2-1 核磁共振儀-------------8 2-1-1 核磁共振(Nuclear Magnetic Resonance, NMR)---8 2-1-2 核磁共振的歷史背景-----9 2-1-3 核磁共振基本原理-------10 2-1-4 遮蔽效應與化學位移-----13 2-1-5 核磁共振的弛緩機制-----15 2-2 擴散係數 (Diffusion coefficient)------18 2-3 黏度 (Viscosity)------19 2-4 密度 (Density)--------20 2-5 導電度 (Conductivity)--20 第三章 實驗----------------22 3-1 實驗藥品種類及合成步驟----22 3-1-1實驗藥品--------------22 3-1-2 合成步驟-------------29 3-2 物理性質測量------------55 (A)密度測量----------------56 (B)黏度測量----------------57 (C)導電度測量--------------58 第四章 結果與討論-----------59 4-1密度-------------------59 一、溫度對雙陽離子液體密度的影響------59 二、相同陰離子,改變陽離子一邊結構對密度帶來的影響------61 三、相同陰離子,將methylimidazole結構改成vinylimidazole結構對密度帶來的影響------62 四、固定陽離子,改變陰離子的種類------63 4-2 黏度--------67 一、溫度對雙陽離子液體黏度的影響------67 二、相同陰離子,改變陽離子一邊結構對黏度帶來的影響------69 三、相同陰離子,將methylimidazole結構改成vinylimidazole結構對黏度帶來的影響-------70 四、固定陽離子,改變陰離子的種類-----71 4-3 擴散係數--------75 一、溫度對雙陽離子液體擴散係數的影響----75 二、相同陰離子,改變陽離子一邊結構對擴散係數帶來的影響-----79 三、相同陰離子,將methylimidazole結構改成vinylimidazole結構對擴散係數帶來的影響-------80 四、固定陽離子,改變陰離子的種類-----81 4-4 導電度-------88 一、溫度對雙陽離子液體導電度的影響-----88 二、相同陰離子,改變陽離子一邊結構對導電度帶來的影響------90 三、相同陰離子,將methylimidazole結構改成vinylimidazole結構對導電度帶來的影響---------91 四、固定陽離子,改變陰離子的種類------91 4-5 熱重分析-------95 4-6環胺類離子液體----96 4-6-1密度--------96 4-6-2 黏度-------97 4-6-3 導電度------98 4-6-4 熱重分析-----99 第五章 結論--------103 一、溫度對離子液體性質帶來的影響-----104 二、相同陰離子,改變陽離子結構帶來的影響--------104 三、相同陽離子,改變陰離子種類帶來的影響--------105 參考文獻-------106 附錄:NMR光譜-------110

    1.(A)P. Walden, Bull. Acad. Imper. Sci. (St. Petersburg), 1800, 1914; (B)S. Sugden And H. Wilkins, J. Chem. Soc., 1291, 1929
    2.F. H. Hurley, T. P. Wier, J. Electrochem. Soc., 98, 203, 1951
    3.H. L. Chum, V. R. Koch, L. L. Miller, R. A. Osteryong, J. Am. Chem. Soc., 97, 3264, 1975
    4.J. S. Wilkes, M.J. Zaworotko, J. Chem. Soc. Chem. Commun., 965, 1992.
    5.J. H. Davis, P. A. Fox., Chem. Commun., 1209, 2003
    6.A. M. Leone, S. C. Weatherly, M. E. Williams, H. H. Thorp, R. W. Murray, J. Am. Chem. Soc.,123, 218, 2001
    7.M. Yoshizawa, A. Narita, H.Ohno, Aust. J. Chem., 57, 139, 2004
    8.S. Hayashi, H. Hamaguchi, Chem. Lett., 33, 1590, 2004
    9.K. Fukumoto, M. Yoshizawa, H. Ohno, J. Am. Chem. Soc., 127, 2398, 2005
    10.Anderson, J. L.; Ding, R.; Ellern, A.; Armstrong, D. W. Structure and Properties of High Stability Geminal Dicationic Ionic Liquids. J. Am. Chem. Soc., 127, 593, 2005
    11.Anderson, J. L.; Armstrong, D. W. Immobilized Ionic Liquids as High-Selectivity/High-Temperature/High-Stability Gas Chromatography Stationary Phases. Anal. Chem., 77, 6453, 2005
    12.Qi, M.; Armstrong, D. W. Dicationic ionic liquid stationary phase for GC-MS analysis of volatile compounds in herbal plants. Anal. Bioanal. Chem., 388, 889, 2007
    13.Huang, K.; Han, X.; Zhang, X.; Armstrong, D. W. PEG-linked germinal dicationic ionic liquids as selective, high-stability gas chromatographic stationary phases. Anal. Bioanal. Chem., 389, 2265, 2007
    14.Han, X.; Armstrong, D. W. Using Geminal Dicationic Ionic Liquids as Solvents for High-Temperature Organic Reactions. Org. Lett., 7, 4205, 2005
    15.Jin, C.-M.; Ye, C.; Phillips, B. S.; Zabinski, J. S.; Liu, X.; Liu, W.; Shreeve, J. M. Polyethylene glycol functionalized dicationic ionic liquids with alkyl or polyfluoroalkyl substituents as high temperature lubricants. J. Mater. Chem., 16, 1529, 2006
    16.Zeng, Z.; Phillips, B. S.; Xiao, J.-C.; Shreeve, J. M. Polyfluoroalkyl, Polyethylene Glycol, 1,4-Bismethylenebenzene, or 1,4-Bismethylene- 2,3,5,6-Tetrafluorobenzene Bridged Functionalized Dicationic Ionic Liquids: Synthesis and Properties as High Temperature Lubricants. Chem. Mater., 20, 2719, 2008
    17.Yu, G.; Yan, S.; Zhou, F.; Liu, X.; Liu, W.; Liang, Y. Synthesis of dicationic symmetrical and asymmetrical ionic liquids and their tribological properties as ultrathin films. Tribol. Lett., 25, 197, 2007
    18.Palacio, M.; Bhushan, B. Molecularly thick dicationic ionic liquid films for nanolubrication. J. Vac. Sci. Technol. A, 27, 986, 2009
    19.Zhang, Z.; Zhoua, H.; Yanga, L.; Tachibana, K.; Kamijima, K.; Xu, J. Asymmetrical dicationic ionic liquids based on both imidazolium and aliphatic ammonium as potential electrolyte additives applied to lithium secondary batteries. Electrochim. Acta, 53, 4833, 2008
    20.Kim, J. Y.; Kim, T. H.; Kim, D. Y.; Park, N.-G.; Ahn, K.-D. Novel thixotropic gel electrolytes based on dicationic bis-imidazolium salts for quasi-solid-state dye-sensitized solar cells. J. Power Sources, 175, 692, 2008
    21.Zafera, C.; Ocakoglub, K.; Ozsoya, C.; Icli, S. Dicationic bisimidazolium molten salts for efficient dye sensitized solar cells: Synthesis and photovoltaic properties. Electrochim. Acta, 54, 5709, 2009
    22.Wilkes, J. S.; Zaworotko, M. J. Air and water stable 1-ethyl-3- methylimidazolium based ionic liquids. J. Chem. Soc., Chem. Commun., 965, 1992
    23.Ionic Liquids in Synthesis, 2nd ed.; Wasserscheid, P., Welton, T., Eds.; Wiley-VCH: Weinheim, 2008
    24.Electrochemical Aspects of Ionic Liquids; Ohno, H., Ed.; Wiley-Interscience: Hoboken, NJ, 2005
    25.Bonhote, P.; Dias, A. P.; Papageorgiou, N.; Kalyanasundaram, K.; Gratzel, M. Hydrophobic, Highly Conductive Ambient-Temperature Molten Salts. Inorg. Chem., 35, 1168, 1996
    26.Shirota, H.; Fukazawa, H. Atom Substitution Effects in Ionic Liquids: A Microscopic View by Femtosecond Raman-Induced Kerr Effect Spectroscopy. In Ionic Liquids: Theory, Properties, New Approaches; Kokorin, A., Ed.; InTech: Rijeka, 201, 2011
    27.Shirota, H.; Castner, E. W., Jr. Why Are Viscosities Lower for Ionic Liquids with -CH2Si(CH3)3 vs -CH2C(CH3)3 Substitutions on the Imidazolium Cations? J Phys. Chem. B, 109, 21576, 2005
    28.Chung, S. H.; Lopato, R.; Greenbaum, S. G.; Shirota, H.; Castner, E. W., Jr.; Wishart, J. F. Nuclear Magnetic Resonance Study of the Dynamics of Imidazolium Ionic Liquids with -CH2Si(CH3)3 vs -CH2C(CH3)3 Substituents. J. Phys. Chem. B, 111, 4885, 2007
    29.Shirota, H.; Nishikawa, K.; Ishida, T. Atom Substitution Effects of [XF6]- in Ionic Liquids. 1. Experimental Study. J. Phys. Chem. B, 113, 9831, 2009
    30.Ishida, T.; Nishikawa, K.; Shirota, H. Atom Substitution Effects of [XF6]- in Ionic Liquids. 2. Theoretical Study. J. Phys. Chem. B, 113, 9840, 2009
    31.Shirota, H.; Fukazawa, H.; Fujisawa, T.; Wishart, J. F. Heavy Atom Substitution Effects in Non-Aromatic Ionic Liquids: Ultrafast Dynamics and Physical Properties. J. Phys. Chem. B, 114, 9400, 2010
    32.Bradaric, C. J.; Downard, A.; Kennedy, C.; Robertson, A. J.; Zhou, Y. Industrial preparation of phosphonium ionic liquids. Green Chem., 5, 143, 2003
    33.Tsunashima, K.; Sugiya, M. Physical and electrochemical properties of low-viscosity phosphonium ionic liquids as potential electrolytes. Electrochem. Commun., 9, 2353, 2007
    34.Tsunashima, K.; Sugiya, M. Physical and Electrochemical Properties of Room Temperature Ionic Liquids Based on Quaternary Phosphonium Cations. Electrochemistry, 75, 734, 2007
    35.Fraser, K. J.; MacFarlane, D. R. Phosphonium-Based Ionic Liquids: An Overview. Aust. J. Chem., 62, 309, 2009
    36.Seki, S.; Hayamizu, K.; Tsuzuki, S.; Fujii, K.; Umebayashi, Y.; Mitsugi, T.; Kobayashi, T.; Ohno, Y.; Kobayashi, Y.; Mita, Y.; Miyashiro, H.; Ishiguro, S.-i. Relationships between center atom species (N, P) and ionic conductivity, viscosity, density, self-diffusion coefficient of quaternary cation room-temperature ionic liquids. Phys. Chem. Chem. Phys., 11, 3509, 2009
    37.Duan, Z. Y.; Gu, Y. L.; Zhang, J.; Zhu, L. Y.; Deng, Y. Q. Journal of Molecular Catalysis A: Chemical, 250, 163, 2006
    38.Zhao, G. Y.; Jiang, T.; Gao, H. X.; Han, B. X.; Huang, J.; Sun, D. H. Green Chemistry, 6, 75, 2004
    39.Du, Y. Y.; Tian, F. L.; Zhao, W. Z. Synthetic Communications, 36, 1661, 2006
    40.Anderson, J. L.; Armstrong, D. W. Analytical Chemistry, 75, 4851, 2003
    41.Tyrrell, H. J. V.; Harris, K. R. Diffusion in Liquids; Butterworths: London 1984
    42.Cussler, E. L. Diffusion, Mass Transfer in Fluid Systems; Cambridge University Cambridge, Press, New York, 1984
    43.Stejskal, E. O.; Tanner, J. E. Journal of Chemical Physics, 42, 288, 1965
    44.Cluster E. L. Diffusion-Mass Transfer in Fluid Systems,; Cambridge Univeristy Press: Cambridge, 1984
    45.陳昱元 國立成功大學碩士論文 2012

    下載圖示 校內:2017-08-27公開
    校外:2017-08-27公開
    QR CODE