簡易檢索 / 詳目顯示

研究生: 余信賢
Yu, Hsin-Hsien
論文名稱: 腸胃繞道手術可調控胰島素敏感性與肝臟星狀細胞活性以改善非酒精性肝炎
Gastrointestinal Bypass Can Reduce Non-alcoholic Steatohepatitis via Modulation of Insulin Sensitivity and Activity of Hepatic Stellate Cell in a Dietary Rat Model
指導教授: 沈延盛
Shan, Yan-Shen
學位類別: 碩士
Master
系所名稱: 醫學院 - 臨床醫學研究所
Institute of Clinical Medicine
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 60
中文關鍵詞: 胰島素敏感性非酒精性肝炎十二指腸空腸繞道
外文關鍵詞: Insulin sensitivity, Nonalcoholic steatohepatitis, Duodenal-jejunal bypass
相關次數: 點閱:68下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 目的: 臨床上有些報告顯示,十二指腸空腸繞道手術可能可以改善糖尿病血糖控制。並同時使非酒精性肝炎嚴重度減低,本研究的目的在探討是否來自十二指腸空腸繞道手術的非酒精性肝炎改善和胰島素敏感性,與肝臟纖維化的肝內星狀細胞活性是否相關。
    實驗設計: 使用Wistar大白鼠,並以下列方式進行12周的飼養,共分為四組: 第一組,正常飲食(個數=6);第二組, Methionine-Choline缺乏與高脂肪飲食(個數=6);第三組,Methionine-Choline缺乏與高脂肪飲食並實行十二指腸空腸繞道手術(個數=6);第四組,Methionine-Choline缺乏與高脂肪飲食並給予Pioglitazone (PGZ),一種胰島素增進敏感性藥物(個數=6)。在12周以後,所有老鼠接受口服葡萄糖耐受性試驗,並記錄體重、飲食量、副睪與腎臟旁脂肪重量,並比較內臟脂肪細胞的大小。以H&E染色觀察肝組織脂肪沉積的情形與肝發炎嚴重度。老鼠並以心臟採血測其肝功能,三酸甘油酯、膽固醇、空腹血糖值、胰島素,也以ELISA測量TNF-α與IL-6測量肝臟的發炎反應。肝纖維化的嚴重度也以IHC染色觀察肝臟之星狀細胞α-SMA的表現,最後在以real-time PCR看在纖維化生成路徑中TGF-β 1的表現與在脂肪生成路徑中SREBP-1的表現。
    結果: Methionine-Choline缺乏與高脂肪飲食確實可以誘發飲食模式的胰島素抗性與非酒精性肝炎的動物.這些動物中,H&E染色可以發現肝細胞內嚴重的脂肪堆積,而IHC染色也可以看到與肝纖維化相關之星狀細胞的α-SMA的表現。 但腸胃繞道手術跟PGZ藥物一樣,可以逆轉許多代謝上的病變,包括內臟脂肪的重量,脂肪細胞的大小,由口服葡萄糖耐受性試驗可以發現更好的血糖控制,更少肝臟脂肪堆積與肝臟α-SMA的表現。且real-time PCR可以發現纖維化生成路徑中TGF-β 1 mRNA的表現也會減弱。
    結論: 十二指腸空腸繞道手術確實可以改善非酒精性肝炎,並且是和胰島素敏感性的改善與肝纖維化相關之星狀細胞的活性相關,而且纖維化生成路徑中TGF-β 1 mRNA的表現減低也有關係。

    Purpose: In some clinical studies, duodenal-jejunal bypass surgery is observed to have better diabetic control and resolution of non-alcoholic steatohepatitis (NASH). The purpose of this study is to investigate whether the effect of duodenal-jejunal bypass on resolution of NASH is associated with insulin sensitivity and activity of hepatic stellate cells in liver tissue.
    Experimental Design: The male Wistar rats are divided into 4 groups and treated as following designs for 12 weeks: Group 1, Normal chow (n=6); Group 2, Methionine-Choline-Deficient (MCD) / High Fat (HF) diet (n=6); Group 3, MCD/HF diet and Duodenal-jejunal bypass (DJB) surgery (n=6); Group 4, MCD/HF diet and Pioglitazone (PGZ), an insulin sensitizer. (n=6). After 12 weeks, these rats all received oral glucose tolerance tests (OGTT). The body weight, food intake, epidydimal fat and peri-renal fat weight were measured and the size of visceral adipocyte was compared. The severity of hepatic steatosis and inflammation of liver tissue was observed by H&E stain. Plasma ALT, triglyceride, total cholesterol, fasting glucose, insulin and cytokines including TNF-α (tumor necrosis factor-α), and interleukin-6 (IL-6) were estimated by ELISA. The severity of fibrosis was determined by the expression of alpha-smooth muscle actin (α-SMA) in hepatic stellate cells by IHC stain. The mRNA expressions of fibrogenic gene, TGF-β 1 (Transforming growth factor-beta 1) and lipogenic gene, SREBF-1 (Sterol regulatory element-binding factor-1) were also examined by real-time PCR.
    Results: MCD/HF diet induced a dietary rat model of insulin resistance and development of NASH. In these MCD/HF dietary rats, H&E stain showed severe hepatic steatosis, ballooning of hepatocytes. IHC stain revealed high expression of α-SMA by hepatic stellate cells for liver fibrosis. However, duodenal-jejunal bypass surgery and pioglitazone both can reverse the majority of metabolic changes such as visceral fat weight, decreased size of adipocytes, better glucose control on OGTT, decreased IL-6, less severe hepatic steatosis and liver fibrosis in morphology and IHC stain for α-SMA expression. Real-time PCR also showed declined mRNA expressions of TGF-β1 in fibrogenesis pathway after bypass surgery as well as in PGZ treatment.
    Conclusion: Reduction of the severity of NASH from duodenal-jejunal bypass is associated with improvement of insulin sensitivity and down-regulation of the activity of hepatic stellate cells for liver fibrosis. Inflammation reaction of liver was also declined after bypass surgery. The mechanism is also associated with the decreased expression of TGF-β 1 in fibrogenesis pathway.
    Keywords: Insulin sensitivity, Non-alcoholic steatohepatitis, Duodenal-jejunal bypass.

    ABSTRACT...3 中文摘要...5 誌謝...7 CONTENT...8 LIST OF TABLE...11 LIST OF FIGURES...12 ABBREVIATIONS...13 INTRODUCTION...15 I. Nonalcoholic Fatty Liver Disease (NAFLD)...15 II. Nonalcoholic Steatohepatitis (NASH)...15 III. Pathophysiology of Nonalcoholic Steatohepatitis..16 1. Nonhepatic Phase...16 A) Fat mass and its cytokines....16 B) Insulin resistance in nonalcoholic fatty liver disease..17 2. Hepatic Phase....18 A) Hepatic steatosis....18 B) Hepatic steatosis progressed to NASH...18 C) Oxidative stress....18 D) Oxidative stress in NASH....19 IV. Duodenal-jejunal Bypass Surgery and Nonalcoholic Fatty Liver Disease...19 1. Clinical observation in bariatric surgery...19 2. Impact of duodenal-jejunal bypass on insulin sensitivity and NAFLD...19 3. Duodenal-jejunal bypass and gut hormones...20 V. Therapeutic strategy for NAFLD...20 1. Lifestyle modification...21 2. Antiobesity medications...21 3. Drugs targeting insulin resistance..21 A) Thiazolidinediones....21 B) Metformin..22 4. Weight loss with bariatric surgery..22 VI. Hypothesis and Specific Aims....22 1. Establish a rat model of duodenal-jejunal bypass with insulin resistance and NASH by high-fat (HF) diet and methionine-choline deficient (MCD) diet...23 2. Whether insulin sensitivity modulate the course of hepatic steatosis in a duodenal-jejunal bypass model.....23 3. Whether reduction of hepatic inflammatory reaction and liver fibrosis from duodenal-jejunal bypass is associated with decreased inflammatory cytokines and inactivation of hepatic stellate cells....23 4. Whether improvement of NASH from duodenal-jejunal bypass is also associated with down-regulation of mRNA expression of fibrogenic or lipogenic gene...24 MATERIALS AND METHODS..25 I. Materials.....25 II. Methods..26 1. Animal Model and Experimental Design...26 2. Metabolic Parameters and Blood Sampling.....26 3. Morphologic examinations by H&E stain and Immuno- histochemistry stain....27 4. Real-Time Quantitative Polymerase Chain Reaction (RT-PCR)..27 1) Extraction of RNA from Frozen tissues by Trizol method....27 2) Reverse Transcription (SuperScript III Reverse Transcriptase kit, invitrogen)....28 3) Real-Time Quantitative Polymerase Chain Reaction (Roche System)...28 5. Statistical Analysis....28 RESULTS...30 I. A Rat Model of Duodenal-jejunal Bypass with Insulin Resistance and NASH by High-fat (HF) Diet and Methionine-choline Deficient (MCD) Diet...30 II. Insulin Sensitivity Modulate the Course of Hepatic Steatosis in a Rat Duodenal-jejunal Bypass Model...30 1. Evaluation of insulin sensitivity...30 1) Oral glucose tolerance test (OGTT)...30 2) Insulin level....31 3) Homeostasis Model Assessment-Insulin Resistance Index (HOMA-IR Index)...31 4) Quantitative Insulin Sensitivity Check Index(QUICKI)....31 2. Blood sampling parameters...31 3. Liver morphology changes....31 4. Visceral fat mass and size of adipocytes...32 III. Reduction of Hepatic Inflammatory Reaction and Liver Fibrosis from Duodenal-jejunal Bypass is Associated with Decreased Inflammatory Cytokines and Inactivation of Hepatic Stellate Cells...33 1. Inflammatory cytokines...33 2. Immunohistochemistry stain for α-SMA expression of hepatic stellate cells..33 IV. Improvement of NASH from Duodenal-jejunal Bypass is also associated with Down-regulation of mRNA Expression of Fibrogenic gene but not Lipogenic Gene...33 DISCUSSION....35 I. Animal Model of Insulin Resistance with Nonalcoholic Steatohepatitis....35 II. Effect of Gastrointestinal Bypass Surgery on Metabolic Improvements...36 III. Morphology changes after Gastrointestinal Bypass Surgery.....37 IV. Liver Fibrosis Activity and Gastrointestinal Bypass Surgery....38 V. Influence of Gastrointestinal Bypass Surgery on Visceral Fat Mass.....38 VI. Fibrogenesis and Lipogenesis Pathways....39 VII. Limitations of this Study....40 VIII. Conclusion...40 FIGURES AND TABLES...41 REFERENCES....54 Curriculum Vitae....59

    Ahima RS, and Flier JS. Adipose tissue as an endocrine organ. Trends. Endocrinol. Metab. 2000;11:327-32.

    Bataller R, and Brenner DA. Liver fibrosis. J Clin Invest. 2005;115:209-18.

    Belfort R, Harrison SA, Brown K, Darland C, Finch J, Hardies J, Balas B, Gastaldelli A, Tio F, Pulcini J, Berria R, Ma JZ, Dwivedi S, Havranek R, Fincke C, DeFronzo R, Bannayan GA, Schenker S, and Cusi K. A placebo-controlled trial of pioglitazone in subjects with nonalcoholic steatohepatitis. N. Engl. J. Med. 2006;355:2297-307.

    Browning JD, and Horton JD. Molecular mediators of hepatic steatosis and liver injury. J. Clin. Invest. 2004;114:147-52.

    Brunt EM, Janney CG, Di Bisceglie AM, Neuschwander-Tetri BA, Bacon BR. Am J Gastroenterol. 1999 Sep;94(9):2467-74. Nonalcoholic steatohepatitis: a proposal for grading and staging the histological lesions.

    Caldwell SH, Chang CY, Nakamoto RK, and Krugner-Higby L. Mitochondria in nonalcoholic fatty liver disease. Clin. Liver Dis. 2004;8:595-617.

    Caldwell SH, and Hespenheide EE. Subacute liver failure in obese women. Am. J. Gastroenterol. 2002;97:2058-62.

    Chavin KD, Yang S, Lin HZ, Chatham J, Chacko VP, Hoek JB, Walajtys-Rode E, Rashid A, Chen CH, Huang CC, Wu TC, Lane MD, and Diehl AM. Obesity induces expression of uncoupling protein-2 in hepatocytes and promotes liver ATP depletion. J. Biol. Chem. 1999;274:5692-700.

    Chitturi S, and Farrell GC. Etiopathogenesis of nonalcoholic steatohepatitis. Semin. Liver Dis. 2001;21:27-41.

    Clark JM, Alkhuraishi AR, Solga SF, Alli P, Diehl AM, and Magnuson TH. Roux-en-Y gastric bypass improves liver histology in patients with non-alcoholic fatty liver disease. Obes. Res. 2005;13:1180-6.

    Clarke SD. Nonalcoholic steatosis and steatohepatitis. I. Molecular mechanism for polyunsaturated fatty acid regulation of gene transcription. Am. J. Physiol. Gastrointest. Liver Physiol. 2001;281:G865-9.

    Day CP, and James OF. Steatohepatitis: a tale of two "hits"? Gastroenterology 1998;114:842-5.

    Furuya CK Jr, de Oliveira CP, de Mello ES, Faintuch J, Raskovski A, Matsuda M, Vezozzo DC, Halpern A, Garrido AB Jr, Alves VA, and Carrilho FJ. Effects of bariatric surgery on nonalcoholic fatty liver disease: preliminary findings after 2 years. J. Gastroenterol. Hepatol. 2007;22:510-4.

    Kaser S, Moschen A, Cayon A, Kaser A, Crespo J, Pons-Romero F, Ebenbichler CF, Patsch JR, and Tilg H. Adiponectin and its receptors in non-alcoholic steatohepatitis. Gut 2005;54:117-21.

    Leclercq IA, Farrell GC, Field J, Bell DR, Gonzalez FJ, and Robertson GR. CYP2E1 and CYP4A as microsomal catalysts of lipid peroxides in murine nonalcoholic steatohepatitis. J. Clin. Invest. 2000;105:1067-75.

    Leclercq IA, Farrell GC, Schriemer R, and Robertson GR. Leptin is essential for the hepatic fibrogenic response to chronic liver injury. J. Hepatol. 2002;37:206-13.

    Leclercq IA, Farrell GC, Field J, Bell DR, Gonzalez FJ, and Robertson GR. CYP2E1 and CYP4A as microsomal catalysts of lipid peroxides in murine nonalcoholic steatohepatitis. J. Clin. Invest. 2000;105:1067-75.

    le Roux CW, Welbourn R, Werling M, Osborne A, Kokkinos A, Laurenius A, Lönroth H, Fändriks L, Ghatei MA, Bloom SR, and Olbers T. Gut hormones as mediators of appetite and weight loss after Roux-en-Y gastric bypass. Ann. Surg. 2007;246:780-5.

    Lu SN, Wang LY, Chang WY, Chen CJ, Su WP, Chen SC, Chuang WL, and Hsieh MY. Abdominal sonographic screening in a single community. Kaohsiung J. Med. Sci. 1990;6:643-6.

    Ludwig J, Viggiano TR, McGill DB, and Oh BJ. Nonalcoholic steatohepatitis: Mayo Clinic experiences with a hitherto unnamed disease. Mayo Clin. Proc. 1980;55:434-8.

    Marra F, Gastaldelli A, Svegliati Baroni G, Tell G, and Tiribelli C. Molecular basis and mechanisms of progression of non-alcoholic steatohepatitis. Trends Mol. Med. 2008;14:72-81.

    Mathurin P, Gonzalez F, Kerdraon O, Leteurtre E, Arnalsteen L, Hollebecque A, Louvet A, Dharancy S, Cocq P, Jany T, Boitard J, Deltenre P, Romon M, and Pattou F. The evolution of severe steatosis after bariatric surgery is related to insulin resistance. Gastroenterology 2006;130:1617-24.

    Matteoni CA, Younossi ZM, Gramlich T, Boparai N, Liu YC, and McCullough AJ. Nonalcoholic fatty liver disease: a spectrum of clinical and pathological severity. Gastroenterology 1999;116:1413-9.

    McTernan CL, McTernan PG, Harte AL, Levick PL, Barnett AH, and Kumar S. Resistin, central obesity, and type 2 diabetes. Lancet 2002;359:46-7.

    Miyazaki Y, Mahankali A, Matsuda M, Mahankali S, Hardies J, Cusi K, Mandarino LJ, and DeFronzo RA. Effect of pioglitazone on abdominal fat distribution and insulin sensitivity in type 2 diabetic patients. J. Clin. Endocrinol. Metab. 2002;87:2784-91.

    Nair S, P Chacko V, Arnold C, and Diehl AM. Hepatic ATP reserve and efficiency of replenishing: comparison between obese and nonobese normal individuals. Am. J. Gastroenterol. 2003;98:466-70.

    Näslund E, and Kral JG. Impact of gastric bypass surgery on gut hormones and glucose homeostasis in type 2 diabetes. Diabetes 2006;55:S92-S97.

    Neuschwander-Tetri BA, and Caldwell SH. Nonalcoholic steatohepatitis: summary of an AASLD Single Topic Conference. Hepatology. 2003;37:1202-19.

    Nguyen-Duy TB, Nichaman MZ, Church TS, Blair SN, and Ross R. Visceral fat and liver fat are independent predictors of metabolic risk factors in men.
    Am. J. Physiol. Endocrinol. Metab. 2003;284:E1065-71.

    Nugent C, and Younossi ZM. Evaluation and management of obesity-related nonalcoholic fatty liver disease. Nat. Clin. Pract. Gastroenterol. Hepatol. 2007;4:432-41.

    Ota T, Takamura T, Kurita S, Matsuzawa N, Kita Y, Uno M, Akahori H, Misu H, Sakurai M, Zen Y, Nakanuma Y, and Kaneko S. Insulin resistance accelerates a dietary rat model of nonalcoholic steatohepatitis. Gastroenterology 2007;132:282-93.

    Poli G. Pathogenesis of liver fibrosis: role of oxidative stress. Mol. Aspects Med. 2000;21:49-98.

    Ratziu V, Bonyhay L, Di Martino V, Charlotte F, Cavallaro L, Sayegh-Tainturier MH, Giral P, Grimaldi A, Opolon P, and Poynard T. Survival, liver failure, and hepatocellular carcinoma in obesity-related cryptogenic cirrhosis. Hepatology 2002;35:1485-93.

    Rubino F, Forgione A, Cummings DE, Vix M, Gnuli D, Mingrone G, Castagneto M, and Marescaux J. The mechanism of diabetes control after gastrointestinal bypass surgery reveals a role of the proximal small intestine in the pathophysiology of type 2 diabetes. Ann. Surg. 2006;244:741-9.

    Sabuncu T, Nazligul Y, Karaoglanoglu M, Ucar E, and Kilic FB. The effects of sibutramine and orlistat on the ultrasonographic findings, insulin resistance and liver enzyme levels in obese patients with non-alcoholic steatohepatitis. Rom. J. Gastroenterol. 2003;12:189-92.

    Tafani M, Schneider TG, Pastorino JG, and Farber JL. Cytochrome c-dependent activation of caspase-3 by tumor necrosis factor requires induction of the mitochondrial permeability transition. Am. J. Pathol. 2000;156:2111-21.

    Ueki K, Kondo T, and Kahn CR. Suppressor of cytokine signaling 1 (SOCS-1) and SOCS-3 cause insulin resistance through inhibition of tyrosine phosphorylation of insulin receptor substrate proteins by discrete mechanisms. Mol. Cell Biol. 2004;24:5434-46.

    Ueno T, Sugawara H, Sujaku K, Hashimoto O, Tsuji R, Tamaki S, Torimura T, Inuzuka S, Sata M, and Tanikawa K. Therapeutic effects of restricted diet and exercise in obese patients with fatty liver. J. Hepatol. 1997;27:103-7.

    Verna EC, and Berk PD. Role of fatty acids in the pathogenesis of obesity and fatty liver: impact of bariatric surgery.Semin Liver Dis. 2008;28:407-26.

    Virkamäki A, Ueki K, and Kahn CR. Protein-protein interaction in insulin signaling and the molecular mechanisms of insulin resistance. J. Clin. Invest. 1999;103:931-43.

    Washington K, Wright K, Shyr Y, Hunter EB, Olson S, and Raiford DS. Hepatic stellate cell activation in nonalcoholic steatohepatitis and fatty liver. Hum. Pathol. 2000;31:822-8.

    Weiss R, Appelbaum L, Schweiger C, Matot I, Constantini N, Idan A, Shussman N, Sosna J, and Keidar A. Short-term dynamics and metabolic impact of abdominal fat depots after bariatric surgery. Diabetes Care 2009;32:1910-5.

    Yang PM, Huang GT, Sheu JC, Hung CM, Lin YM, Lai MY, Chen DS, and Sung JL. Mass screening of hepatobiliary diseases by real-time ultrasonography. J. Formos. Med. Assoc. 1986;85:1114-50.

    Yang S, Zhu H, Li Y, Lin H, Gabrielson K, Trush MA, and Diehl AM. Mitochondrial adaptations to obesity-related oxidant stress. Arch. Biochem. Biophys. 2000;378:259-68.

    Yokohama S, Yoneda M, Haneda M, Okamoto S, Okada M, Aso K, Hasegawa T, Tokusashi Y, Miyokawa N, and Nakamura K. Therapeutic efficacy of an angiotensin II receptor antagonist in patients with nonalcoholic steatohepatitis. Hepatology 2004;40:1222-5.

    Zhou G, Myers R, Li Y, Chen Y, Shen X, Fenyk-Melody J, Wu M, Ventre J, Doebber T, Fujii N, Musi N, Hirshman MF, Goodyear LJ, and Moller DE. Role of AMP-activated protein kinase in mechanism of metformin action. J. Clin. Invest. 2001;108:1167-74.

    Zou Y, Li J, Lu C, Wang J, Ge J, Huang Y, Zhang L, and Wang Y. High-fat emulsion-induced rat model of nonalcoholic steatohepatitis. Life Sci. 2006;79:1100-7.

    蕭敦仁、職場肝功能異常原因暨肝病管理探討、國立台灣大學公共衛生學院職業醫學暨工業衛生研究所博士論文 (2005)。

    下載圖示 校內:2011-02-05公開
    校外:2011-02-05公開
    QR CODE