簡易檢索 / 詳目顯示

研究生: 高德容
Kao, Te-Jung
論文名稱: 以半解析有限層狀元素法進行功能性壓電圓柱微殼於外力與電位移作用下之三維尺度相關應力和變形分析
A Semi-Analytical Finite Layer Method for the 3D Size-Dependent Stress and Deformation Analysis of Functionally Graded Piezoelectric Cylindrical Microshells Subjected to Mechanical Loads and Electric Displacement
指導教授: 吳致平
Wu, Chih-Ping
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 56
中文關鍵詞: 圓柱微殼協合/修正應力偶理論有限層狀元素法功能梯度材料應力與變形壓電效應
外文關鍵詞: cylindrical microshells, consistent/modified couple stress theory, finite layer methods, functionally graded material, stress and deformation, piezoelectricity
相關次數: 點閱:65下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文基於協合應力偶理論(Consistent Couple Stress Theory , CCST),發展了Hermitian C2有限層狀元素法(Finite Layer Method, FLM),用於對簡支承邊界下的功能性(Functionally Graded, FG)壓電圓柱微殼進行三維尺度相關的應力與變形分析。該圓柱微殼處於開放迴路表面條件,並在內外表面承受外力與電位移作用。首先,我們利用位能駐值原理推導三維弱形式,並將圓柱微殼人為地劃分為nl層,其中每層的主要變數為彈性位移分量與電位勢。接著,我們將層狀變位模型納入弱形式理論表述中,進一步發展半解析有限層狀元素方法,以求解圓柱微殼內誘發的彈性與電場變數。其中,每個主要變數均在面內方向使用雙重傅立葉級數展開,在厚度方向則採用Hermitian C2多項式函數進行內插擬合。為驗證本方法的準確性,我們將材料尺度參數設為零,並將所得解與文獻中FG壓電圓柱宏觀殼的三維精確解進行比較。此外,我們亦探討重要影響因素對圓柱微殼域內電場與彈性場變數的影響,其中包括半徑與厚度比、非均勻指數、材料尺度參數及壓電效應。研究結果顯示,隨著厚度、材料尺度參數與壓電效應的增加,微殼剛性提升,進而使得位移、面內應力與橫向應力顯著減小;而非均勻性指數愈高,則所誘發之彈性場與電場變數在厚度方向上變化愈劇烈。

    Based on the consistent couple stress theory (CCST), this study develops a Hermitian C² finite layer method (FLM) for conducting a three-dimensional, size-dependent stress and deformation analysis of a simply supported functionally graded (FG) piezoelectric cylindrical microshell. The cylindrical microshell is subjected to mechanical loads and electric displacements on its inner and outer surfaces under open-circuit boundary conditions. Using the stationary principle of potential energy, we first derive a 3D weak formulation, in which the shell is artificially divided into nl layers, with the elastic displacement components and the electric potential of each layer being selected as the primary variables. By integrating a layer-wise generalized displacement model into the weak formulation, a semi-analytical finite layer method is developed to solve for the elastic and electric field variables induced in the cylindrical microshell. Each primary variable is expanded in the in-surface directions using a double Fourier series, while Hermitian C² polynomial functions are employed for interpolation along the thickness direction. To verify the accuracy of the proposed method, we set the material length-scale parameter to zero and compare the obtained results with existing 3D exact solutions for FG piezoelectric cylindrical macroscale shells in the literature. Additionally, we investigate the effects of several essential factors on the elastic and electric field variables within the cylindrical microshell, including the radius-to-thickness ratio, the inhomogeneity index, the material length-scale parameter, and piezoelectricity.

    摘要 I Extended Abstract II 誌謝 V 目錄 VI 表目錄 VII 圖目錄 VIII 符號表 IX 第一章 緒論 1 第二章 理論公式 4 2.1協合應力偶理論 4 2.2基於CCST之Hermitian Cn 有限層狀元素法 5 2.2.1廣義運動學與厚度方向之C²元素 5 2.2.2本構方程式 7 2.2.3主次變數關係式 9 2.2.4位能駐值原理 11 2.2.5有限圓柱層狀元素方程 14 第三章 數值範例 19 3.1文獻比對與理論驗證 19 3.2參數分析 21 第四章 結論 25 參考文獻 27 附錄A 32

    [1] Carrera E. An assessment of mixed and classical theories on global and local response of multilayered orthotropic plates. Composite Structures 2000;50(2):183-198. doi:10.1016/S0263-8223 (00)00099-4.
    [2] Carrera E. Historical review of zig-zag theories for multilayered plates and shells. Applied Mechanics Reviews 2003;56(3):287-308. doi:10.1115/1.1557614.
    [3] Heyliger P, Saravanos DA. Exact free vibration analysis of laminated plates with embedded piezoelectric layers. The Journal of Acoustical Society of America 1995;98(3):1547-1557. doi:10.1121/1.413420.
    [4] Wu CP, Tan TF, Hsu HT. A size-dependent finite element method for the 3D free vibration analysis of functionally graded graphene platelets-reinforced composite cylindrical microshells based on the consistent couple stress theory. Materials 2023;16(6):2363. doi:10.3390/ma16062363.
    [5] Wu CP, Liu YC. A review of semi-analytical numerical methods for laminated composite and multilayered functionally graded elastic/piezoelectric plates and shells. Composite Structures 2016;147:1-15. doi:10.1016/j.compstruct.2016.03.031.
    [6] Wu CP, Chiu KH, Wang YM. A review on the three-dimensional analytical approaches of multilayered and functionally graded piezoelectric plates and shells. CMC-Computers, Materials, & Continua 2008;8(2):93-132.
    [7] Mindlin RD, Tiersten HF. Effects of couple-stresses in linear elasticity. Archive for Rational Mechanics and Analysis 1962; 11:415-448.
    [8] Toupin RA. Elastic materials with couple-stresses. Archive for Rational Mechanics and Analysis 1962;11:385-414.
    [9] Koiter WT. Couple stresses in the theory of elasticity, I and II. Philosophical Transactions of the Royal Society of London B 1964;67:17-44. https://sid.ir/paper/605637/en.
    [10] Eringen AC. Theory of micropolar elasticity. In: Eringen AC. (Eds). Fracture. New York: Academic Press, 1968.
    [11] Hadjesfandiari AR, Dargush GF. Couple stress theory for solids. International Journal of Solids and Structures 2011;48:2496-2510. doi:10.1016/j.ijsolstr.2011.05.002.
    [12] Hadjesfandiari AR, Dargush GF. Fundamental solutions for isotropic size-dependent couple stress elasticity. International Journal of Solids and Structures 2013;50:1253-1265. doi:10.1016/j.ijsolstr. 2012.12.021.
    [13] Yang F, Chong ACM, Lam DCC, Tong P. Couple stress-based strain gradient theory for elasticity. International Journal of Solids and Structures 2002;39:2731-2743. doi:10.1016/S0020-7683(02) 00152-X.
    [14] Hadjesfandiari AR. Size-dependent piezoelectricity. International Journal of Solids and Structures 2013;50:2781-2791. doi:10.1016/j.ijsolstr.2013.04.020.
    [15] Hadjesfandiari AR. Size-dependent thermoelasticity. Latin American Journal of Solids and Structures 2014;11:1679-1708. doi:10.1590/S1679-78252014000900010.
    [16] Thai HT, Kim SE. A size-dependent functionally graded Reddy plate model based on a modified couple stress theory. Composites Part B: Engineering, 45 (2013) :1636–1645.
    [17] Beni YT, Mehralian F, Razavi H. Free vibration analysis of size-dependent shear deformable functionally graded cylindrical shell on the basis of modified couple stress theory. Composite Structures 2015;120:65-78. doi:10.1016/j.compstruct.2014.09.065.
    [18] Arefi M. Third-order electro-elastic analysis of sandwich doubly curved piezoelectric micro shells. Mechanics Based Design of Structures and Machines 2021;49(6):781-810. doi:10.1080/15397734. 2019.1698435.
    [19] Tang F, He S, Shi S, Xue S, Dong F, Liu S. Analysis of size-dependent linear static bending, buckling, and free vibration based on a modified couple stress theory. Materials 2022;15:7583. doi:10.3390/ ma15217583.
    [20] Wei L, Qing H. Bending, buckling and vibration analysis of bi-directional functionally graded circular/annular microplate based on MCST. Composite Structures 2022;292:115633. doi:10.1016/ j.comp struct.2022.115633.
    [21] Wang Y, Xie K, Fu T, Zhang W. A unified modified couple stress model for size-dependent free vibrations of FG cylindrical microshells based on high-order shear deformation theory. The European Physical Journal Plus 2020;135:71. doi:10.1140/epjp/s13360-019-00012-3.
    [22] Razavi H, Babadi AF, Beni YT. Free vibration analysis of functionally graded piezoelectric cylindrical nanoshell based on consistent couple stress theory. Composite Structures 2017;160:1299-1309. doi:10.1016/j.compstruct.2016.10.056.
    [23] Alavi SE, Sadighi M, Pazhooh MD, Ganghoffer JF. Development of size-dependent consistent couple stress theory of Timoshenko beams. Applied Mathematical Modelling, 2020; 79:685–712.
    [24] Wu CP, Hu HX. A unified size-dependent plate theory for static bending and free vibration analyses of micro- and nano-scale plates based on the consistent couple stress theory. Mechanics of Materials 2021; 162:104085. doi:10.1016/j.mechmat.2021.104085.
    [25] Wu CP, Lin EL. Free vibration analysis of porous functionally graded piezoelectric microplates resting on an elastic medium subjected to electric voltages. Archive of Mechanics 2022;74:463-511. doi:10.24423/aom.4150.
    [26] Wu CP, Hsu CH. A three-dimensional weak formulation for stress, deformation, and free vibration analyses of functionally graded microscale plates based on the consistent couple stress theory. Composite Structures 2022;296:115829. doi:10.1016/j.compstruct.2022.115829.
    [27] Wu CP, Lu YA. A Hermite-family C1 finite layer method for the three-dimensional free vibration analysis of exponential graded piezoelectric microplates based on the consistent couple stress theory. International Journal of Structural Stability and Dynamics 2023;23:2350044. doi:10.1142/ S021945542350044X.
    [28] Saada AS. Elasticity Theory and Applications. New York: Pergamon Press, 1974.
    [29] Reddy JN. Energy and Variational Methods in Applied Mechanics. New York: Wiley, 1984.
    [30] Lam DCC, Yang F, Chong ACM, Wang J, Tong P. Experiments and theory in strain gradient elasticity. Journal of Mechanics and Physics of Solids 2003;51(8):1477-1508.
    [31] Kapuria S, Sengupta S, Dumir PC. Assessment of shell theories for hybrid piezoelectric cylindrical shell under electromechanical load. International Journal of Mechanical Sciences 1998;40:461-477.
    [32] Kapuria S, Sengupta S, Dumir PC. Three-dimensional solutions for simply-supported piezoelectric cylindrical shell for axisymmetric load. Computer Methods in Applied Mechanics and Engineering 1997;140:139-155.
    [33] Wu CP, Syu YS.Asymptotic Solutions for Multilayered Piezoelectric Cylinders under Electromechanical Loads.Computers, Materials & Continua 2006; 4(2), 87-108.
    [34] Zhong Z, Shang ET. Three-dimensional exact analysis of a simply supported functionally graded piezoelectric plate. International Journal of Solids and Structures 2003;40(20):5335-5352. doi:10.1016/ S0020-7683(03)00288-9.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE