簡易檢索 / 詳目顯示

研究生: 繆字碩
Miau, Tz-Shuo
論文名稱: 光電化學反應在氮化鎵金氧半元件之應用
GaN-based metal-oxide-semiconductor devices fabricated by photoelectrochemical process
指導教授: 許進恭
Sheu, Jinn-Kong
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程研究所
Institute of Electro-Optical Science and Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 71
中文關鍵詞: 光電化學氧化金氧半二極體氮化鎵
外文關鍵詞: PEC, MOS, GaN
相關次數: 點閱:77下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文結合光電化學氧化法(Photoelectrochemical Oxidation)及壓印技術(Imprint Technique),在氮化鎵(GaN)的表面上成長圖形化的氧化鎵層(Gallium Oxide),在此研究中,藉由氧化電壓控制氧化層的成長速率,更進一步在不同環境氣體下熱處理原生氧化層,並成功應用於GaN金氧半結構紫外光偵測器之製作。
    由實驗結果得知,此原生氧化層的表面 粗糙程度(room-mean-square , RMS)隨氧化電壓(氧化速率)的增加而變大,在5與1.5V時其表面之粗糙度RMS值約分別為7.6與4.8nm。另外在熱處理的實驗中,從MOS結構的電容-電壓特性可得知,在300°C時,氧氣環境下熱處理30分鐘可明顯改善其電容-電壓特性,在進一步分析電容-電壓特性曲線的結果,可得知在氧氣環境下熱處理應可有效降低此氧化層的缺陷密度,其介面缺陷密度達到1011 cm-2 eV-1~1012 cm-2 eV-1等級。此外,在負偏壓的電流-電壓特性曲線顯示,在1.5V的氧化電壓下所成長的氧化層與表面沒覆蓋氧化層的元件相比較下,能夠明顯降低漏電流約2~4個數量級。

    In this thesis, Photoelectrochemical Oxidation combined with imprint technique to form a gallium oxide layer on GaN epitaxial layer surface. In this study, we controlled the growth rate of oxide layer by tuning bias voltages, and the quality of oxide layers could be further improved by annealing in different ambient. In addition, we also applied this technique to fabricated UV photodetectors with GaN-based MOS structure.
    According to the embodiment, roughness of room-mean-square (RMS) values of gallium oxide increased with the increase of applied bias(growth rate) voltages. The RMS value were around 7.6 and 4.8 nm when the bias voltages were at 5 and 1.5V, respectively. Regarding to the effect of thermal annealing on the device performance, the oxide layers were annealed under different ambiences. Experimental results indicated that the capacitance-voltage(C-V) characteristics of MOS devices annealed in O2 ambient at 300°C for 30 minutes can be markedly improved. Furthermore, Experimental results also revealed that the interface traps density in the GaN MOS diodes could be reduced by annealing the gallium oxide layers in oxygen-containing ambient. The typical interface traps density was estimated around the level of 1011 cm-2 eV-1~1012 cm-2 eV-1.In addition, reverse leakage current of the GaN MOS diodes could be significantly reduced by the improvement of gallium oxide layer quality. On the other hand, the reverse leakage current of the GaN MOS diodes was 2~4 order lower than those of GaN Schottky diodes, which the GaN epitaxial layer used in this case was the same, when the oxide layer was generated under 1.5V bias.

    摘要 I Abstract II 致謝 III 目錄 IV 表目錄 V 圖目錄 V 第一章 序論 1 1.1簡介 1 1.2 研究動機 2 第二章 理論基礎與實驗量測系統 4 2.1 金屬/氧化物/半導體MIS (metal – insulator – semiconductor ) 二極體原理[19,25] 4 2.2 壓印技術 7 2.3 光致電化學(PEC)氧化法原理 8 2.4 光偵測器原理[21-23] 11 2.5 量測系統 11 2.5.1 光響應度測量原理[21-23] 11 2.5.2 2維表面粗度儀(α-step) 12 2.5.3 掃描式電子顯微鏡(SEM)量測系統 13 2.5.4 原子力顯微鏡(AFM)量測系統 14 2.5.5 電流-電壓量測系統 18 2.5.6 電容-電壓量測系統 18 第三章 實驗製程方法與步驟 19 3.1 製程儀器 19 3.1.1 PEC壓印氧化系統 19 3.1.2 感應偶合式電漿蝕刻(ICP) 20 3.1.3 電子束蒸鍍機 21 3.1.4 RTA和爐管 21 3.2 元件製作流程 21 第四章 實驗結果分析與討論 28 4.1 氧化層之氧化條件於金氧半二極體特性之探討 28 4.1.1 氧化層氧化電壓對氮化鎵金氧半二極體特性之影響 28 4.1.2 氧化鎵層厚度在氮化氧半二極體特性之影響 30 4.2 不同熱處理條件在氮化鎵金氧半二極體特性之影響 42 第五章 結論與未來展望 66 5.1 結論 66 5.2 未來展望 67 參考文獻 68 表目錄 表3.1 各種操作偏壓下氧化速率之結果 24 表4.1氧化鎵薄膜表面RMS 33 表4.2 氧化鎵薄膜表面RMS 45 表4-3 電容電壓計算參數表 53 表4-4 C3和C4氧化層特性比較 58 表4-5 高-低頻電壓電容分析法 61 圖目錄 圖2.1 金屬-絕緣體-半導體(MIS)二極體結構 6 圖2.2 理想MIS聚積現象的能帶圖 6 圖2.3 理想MIS空乏現象的能帶圖 7 圖2.4 理想MIS反轉現象的能帶圖 7 圖2.5 電壓印一般架構示意圖 8 圖2.6 傳統PEC 氧化法實驗架構示意圖 9 圖2.7 為氮化鎵在與液體接觸後的固-液相平衡能帶-空間關係示意圖 10 圖2.8 掃描式電子顯微鏡基本構造圖 13 圖2.9 原子力顯微鏡掃描模式 [26] 17 圖2.10 原子力顯微鏡的基本構造[26] 18 圖2.11 原子力顯微鏡探針[26] 18 圖3.1 紫外光固化式奈米壓印機基本構造圖。 19 圖3.2感應偶合式電漿蝕刻系統示意圖 20 圖3.3 試片鍍上歐姆電極後示意圖 23 圖3.4 脈衝式電壓一個脈衝週期示意圖 23 圖3.5 表面無氧化層的蕭特基二極體示意圖(B5) 26 圖3.6 表面有氧化層的MIS二極體示意圖(B1~B4、C1~C5) 27 圖3.7製程元件之OM(50倍)圖 27 圖4.1試片B2、B4和B5電流曲線 29 圖4.2試片B1、B2和B5電流曲線 31 圖4.3試片B3、B4和B5電流曲線 31 圖4.4 試片B1氧化鎵薄膜表面三維AFM影像圖 32 圖4.5 試片B2氧化鎵薄膜表面三維AFM影像圖 32 圖4.6試片B3氧化鎵薄膜表面三維AFM影像圖 33 圖4.8 試片B5暗電流及光電流 37 圖4.9 試片B2暗電流及光電流 37 圖4.10 試片B4暗電流及光電流 38 圖4.11 試片B1暗電流及光電流 38 圖4.12 試片B3暗電流及光電流 39 圖4.13 試片B5光檢測器光響應 39 圖4.14試片B2光檢測器光響應 40 圖4.15試片B4光檢測器光響應 40 圖4.16試片B1光檢測器光響應 41 圖4.17試片B3光檢測器光響應 41 圖4.18 在相同熱處理環境不同溫度電流曲線 43 圖4.19 不同熱處理環境之電流曲線 43 圖4.20 試片C5氧化鎵薄膜表面三維AFM影像圖 44 圖4.21 試片C1氧化鎵薄膜表面三維AFM影像圖 44 圖4.22 試片C2氧化鎵薄膜表面三維AFM影像圖 45 圖4.23 試片C3氧化鎵薄膜表面三維AFM影像圖 45 圖4.25 試片C5暗電流及光電流 48 圖4.26試片C1暗電流及光電流 48 圖4.27試片C2暗電流及光電流 49 圖4.28試片C4暗電流及光電流 49 圖4.29試片C3暗電流及光電流 50 圖4.30 試片C5光檢測器光響應 50 圖4.31 試片C1光檢測器光響應 51 圖4.32 試片C2光檢測器光響應 51 圖4.33 試片C4光檢測器光響應 52 圖4.34 試片C3光檢測器光響應 52 圖4.35 試片C4電容特性曲線 60 圖4.36 試片C3電容特性曲線 61 圖4.37 試片C3和C4電壓-電容特性曲線 61 圖4.38 試片C3不同頻率的電容-電壓曲線 62 圖4.39 試片C4不同頻率的電容-電壓曲線 62 圖4.40 試片C3不同頻率的電容-電壓曲線 63 圖4.41 試片C4電容-電壓磁滯曲線 64 圖4.42試片C3電容-電壓磁滯曲線 64 圖4.43試片C3 SEM cross-section 65

    [1] Q. Chen, M.A. Khan, C.J Sun and J.W. Yang , ” Visible-blind ultraviolet photodetectors based on GaN p-n junctions” Electron. Lett. Vol.31, pp.1781-1782(1995)
    [2] E. Monroy, E. Munoz, F.J. Sanchez, F. Calle, E. Calleja, B. Beaumount, PP. Gibart , J.A. Munoz , F. Cusso , “High-performance GaN p-n junction photodetectors for solar ultraviolet applications” Semicond. Sci. Technol. Vol.13,pp.1042-1046,(1998)
    [3] Q. Chen, J.W. Yang, A. Osinsky, S. Gangopadhyay, B. Lim, M.Z. Anwar, M. Asi Khan, D. Kuksenkov, H. Temkin, “Schottky barrier detectors on GaN for visible–blind ultraviolet detection” Appl. Phys. Lett.Vol.70,pp.2277-2279, (1997)
    [4] E. Monroy, F. Calle, E. Munoz, F. Omnes, pp. Gibart, J.A. Munoz, “AlxGa1 – xN:Si Schottky barrier photodiodes with fast response and high detectivity” Appl. Phys. Lett., Vol.73 , pp.2146-2148 , (1998).
    [5] G. Parish, S. Keller, PP. Kozodoy, J.A. Ibbetson, H. Marchand, PP. T. Fini, S . B. Fleischer, S. PP. DenBaars, and U. K. Mishra, Appl. Phys. Lett., Vol. 75,pp.247-249,(1999)
    [6] E. Monory, M. Hamilton, D. Walker, PP. Kung, F.J. Sanchez, and M. Razeghi, “High-quality visible-blind AlGaN p-i-n photodiodes” Appl. Phys. Lett., Vol. 74,pp.1171-1173,(1999)
    [7] D. Walker, E. Momroy, PP. Kung, J. Wu, M. Hamilton, F.J. Sanchez, J. Diaz, M. Razeghi, “High-speed,low-noise metal–semiconductor–metal ultraviolet photodetectors based on GaN” Appl. Phys. Lett., Vol.74, pp.762-764,(1999)
    [8] E . Monroy, F . Calle, E. Munoz, F. Omn’s, “AlGaN metal – semiconductor – metal photodiodes” Appl. Phys.Lett., VoL.74 , pp . 3401-3403 , (1999)
    [9] T. Wolff, M. Rapp, “Photoelectrochemical Wet Etching and CV-Profiling of Nitride Semiconductors” IEEE, pp.230, (2004).
    [10] Bo Yang and Patrick Fay , “Etch rate and surface morphology control in photoelectrochemical etching of GaN” American Vacuum Society, Vol.22, pp.1750,(2006).
    [11] Nanako SHIOZAKI, Taketomo SATO, and Tamotsu HASHIZUME, “Formation of Thin Native Oxide Layer on n-GaN by Electrochemical Process in Mixed Solution with Glycol and Water” Japanese Journal of applied Physics, Vol.46, pp.1471–1473,(2007).
    [12] L.H. Peng, C.H. Liao, Y.C. “Photoenhanced wet oxidation of gallium nitride” Hsu,Appl. Phys. Lett. ,Vol,76 ,pp.511-513, (2000).
    [13] 葉俊逸,“ 交流電輔助N型氮化鎵光電化學反應氧化圖形壓印究 ” , 國立成功大學光電科學與工程研究所,碩士論文 (2008) .
    [14] Deju Fu and Tae Won Kang, “Electrical Properties of Gallium Oxide Grown by Photoelectrochemical Oxidation of GaN Epilayers” Jpn .J .Appl . Phys. Vol . 41 pp . L1437 - L1439 (2002)
    [15] D. J. Fu, Y. H. Kwon, T. W. Kang,a C. J. Park, K. H. Baek, H. Y. Cho, D. H. Shin, C. H. Lee and K. S. Chung, “GaN metal–oxide–semiconductor structures using Ga-oxide dielectrics formed by photoelectrochemical oxidation” Appl. Phys. Lett. , Vol.80, pp.446-448 (2002)
    [16] T. Rottera, R. Ferrettib, D. Mistelea, F. Fedlera, H. Klausinga, J. Stemmera, O.K. Semchinovaa, J. Aderholda, J. Graula, “”, Journal of Crystal Growth 230 pp602–606 (2001)
    [17] Li-Hsien Huang, Shu-Hao Yeh,and Ching-Ting Lee, “High frequency and low frequency noise of AlGaN/GaN metal-oxide-semiconductor high-electron mobility transistors with gate insulator grown using photoelectrochemical oxidation method” Appl. Phys. Lett. , Vol.93, Article Number: 043511 (2008)
    [18] Sze, ”physics of Semiconductor Devices” Ch 7
    [19] Ching-Ting Lee, Hong-Wei-Chen, Fu-Tsai Hwang, and Hsin-Ying Lee, “Investigation of Ga oxide films directly grown on n-type GaN by photoelectrochemical oxidation using He-Cd laser” Journal of ELECTRONIC MATERIALS, Vol. 34, pp 282-286, (2005)
    [20] Dieter K. Schroder , A Wiley-Interscience Publication (1998)
    [21] D.A. Neamen , “半導體物理及元件(三版)” , (2003)
    [22] 施敏 , “半導體元院物理與製程技術(二版)”(2002)
    [23] H. C. Casey, Jr., G. G. Fountain, R. G. Alley, B. P. Keller, and S. P. Denbaars, “Low interface trap density for remote plasma deposited SiO2 on n-type GaN” Appl. Phys. Lett. 68, 1850 (1996)
    [24] E. H. Nicollian and J. R. Brews, MOS Physics and Technology (Wiley, New York, 1982) Ch 8
    [25] Hisn - Ying Lee, “Growth of GaAs Oxide Layer Using Photoelectro - chemical Method” Journal of Electrochemical Socity , Vol.155 G141-G144 (2008)
    [26] 黃郁心, “成長於不同超晶格層上氮化鎵/氮化銦鎵多重量子井之光學特性研究”, 國立成功大學光電科學與工程研究所,碩士論文 (2007) .
    [27] S . Noor Mohammad, “Contact mechanisms and design principles for Schottky contacts to group-III nitrides” Journal of Applied physics 97,063703(2005)
    [28] E. J. Miller, E. T. Yu, P.Waltereit, and J. S. Speck, “Reverse-bias leakage current reduction in GaN Schottky diodes by electrochemical surface treatment” Appl. Phys Lett.Vol.84 pp1293-1295(2003)
    [29] J. C. Carrano, T. Li, P. A. Grudowski, C. J. Eiting, R. D. Dupuis, and J. C.Campbell, “Comprehensive characterization of metal – semiconductor – metal ultraviolet photodetectors fabricated on single-crystal GaN”Appl. Phys Lett.Vol.83 pp6148-6160(1998)
    [30] Hiroki Hasegawa, Yasushi Kamimura, and Keiichi Edagawa “ Dislocation - related optical absorption in plastically deformed GaN” , Journal of Applied Physics 102, 026103 (2007)

    下載圖示 校內:2012-08-11公開
    校外:2012-08-11公開
    QR CODE