| 研究生: |
陳家熠 Chen, Chia-Yi |
|---|---|
| 論文名稱: |
超音速熔噴噴嘴設計應用於超細纖維拉伸之探討 Investigation of Supersonic Melt-blown Nozzle Design and its Application in Ultrafine Fiber Attenuation |
| 指導教授: |
呂宗行
Leu, Tzong-Shyng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 113 |
| 中文關鍵詞: | 熔噴 、超音速噴嘴 、聚合物拉伸 |
| 外文關鍵詞: | melt-blown, supersonic nozzle, polymer attenuation |
| 相關次數: | 點閱:90 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究設計一超音速熔噴噴嘴,探討加裝超音速噴嘴對於聚合物拉伸之影響。因氣流加速斜率及其最高速度大小影響超音速噴嘴設計,因此本研究將加裝漸縮-漸擴噴嘴之氣流場特徵參數化,以不同加速斜率及最高速度大小,配合一維聚合物拉伸模型分析,藉此了解兩種參數對聚合物拉伸直徑之影響。以上述結果為超音速熔噴噴嘴設計參考,並以計算流體力學數值模擬方式獲得其氣流場,同時比較相同氣流質量流率下,有無加裝超音速噴嘴對於拉伸氣流場之差異。再利用沿噴嘴中心線之氣流速度、溫度、密度場模擬結果,配合一維聚合物拉伸模型,計算於不同聚合物質量流率下,聚合物之直徑、速度、溫度。結果發現,聚合物質量流率越低,越容易使聚合物被拉伸且直徑越小,而固定質量流率於不同氣流場之最終直徑變化不大,為探討上述結果,本研究以聚合物拉伸模型為基礎,估計直徑改變1%所需之氣流速度。估計結果發現聚合物質量流率越低,所需之氣流速度越小,因此聚合物較易被拉伸;另外,本研究提供之氣流速度(1~2.5馬赫)下,不同聚合物質量流率有其有效之拉伸範圍,質量流率為0.005g/s、0.001g/s、0.0005g/s、0.0001g/s時,其有效範圍分別為10μm、3μm、2μm、0.6μm以上。
In this study, supersonic melt-blown nozzles are designed to investigate the effects of supersonic nozzle in melt-blown process on polymer attenuation. Because the airflow velocity acceleration rate and its maximum affect the design of the supersonic nozzle, the airflow field with convergent-divergent nozzle will be parameterized. Computations of polymer attenuation are based on the one-dimensional polymer tensile model with fixed polymer mass flow at 0.005g/s. According to the results above, supersonic melt-blown nozzles are designed, and simulations of the nozzles are performed using the computational fluid dynamics numerical method. The results show that the addition of the supersonic melt-blown Nozzle1、Nozzle2、Nozzle3 accelerates the maximum velocity of the airflow separately from 311m/s to 494m/s, 427m/s to 609m/s and 694m/s to 754m/s under their own air mass flow rate of 0.92kg/s、1.52kg/s、3.07kg/s. The airflow fields above are used to predict polymer attenuation. It is found that the lower the polymer mass flow rate is, the more easily the polymer is stretched. The final diameters of fixed polymer mass flow rates have little change under different airflow fields. In order to discuss the above results, the air velocity required to change 1% of the diameter are estimated. Under the air velocity (1~2.5 Mach), different polymer mass flow rates have their effective stretching ranges. When the polymer mass flow rates are 0.005g/s, 0.001g/s, 0.0005g/s and 0.0001g/s, the effective diameter are larger than 10μm、3μm、2μm、0.6μm separately.
[1] T.-S. Chung and S. Abdalla, "Mathematical modeling of air-drag spinning for nonwoven fabrics," Polymer-Plastics Technology and Engineering, vol. 24, pp. 117-127, 1985.
[2] M. Matsui, "Air drag on a continuous filament in melt spinning," Transactions of the Society of Rheology, vol. 20, pp. 465-473, 1976.
[3] B. Majumdar and R. L. Shambaugh, "Air drag on filaments in the melt blowing process," Journal of Rheology, vol. 34, pp. 591-601, 1990.
[4] M. A. Uyttendaele and R. L. Shambaugh, "Melt blowing: General equation development and experimental verification," AIChE Journal, vol. 36, pp. 175-186, 1990.
[5] R. S. Rao and R. L. Shambaugh, "Vibration and stability in the melt blowing process," Industrial & engineering chemistry research, vol. 32, pp. 3100-3111, 1993.
[6] 陈廷 and 黄秀宝, "对熔喷气流拉伸一维数学模型的改进研究," 中国纺织大学学报, vol. 26, pp. 1-5, 2000.
[7] 陈廷, "熔喷非织造气流拉伸工艺研究," 上海: 东华大学纺织学院, 2003.
[8] B. R. Shambaugh, D. V. Papavassiliou, and R. L. Shambaugh, "Next-generation modeling of melt blowing," Industrial & Engineering Chemistry Research, vol. 50, pp. 12233-12245, 2011.
[9] M. A. Uyttendaele and R. L. Shambaugh, "The flow field of annular jets at moderate Reynolds numbers," Industrial & engineering chemistry research, vol. 28, pp. 1735-1740, 1989.
[10] A. Mohammed and R. L. Shambaugh, "Three-dimensional temperature field of a rectangular array of practical air jets," Industrial & engineering chemistry research, vol. 33, pp. 730-735, 1994.
[11] A. S. Harpham and R. L. Shambaugh, "Flow field of practical dual rectangular jets," Industrial & engineering chemistry research, vol. 35, pp. 3776-3781, 1996.
[12] A. S. Harpham and R. L. Shambaugh, "Velocity and temperature fields of dual rectangular jets," Industrial & engineering chemistry research, vol. 36, pp. 3937-3943, 1997.
[13] 陈廷 and 黄秀宝, "Numerical Simulation of the Air Jet Flow Field in the Melt Blowing Process," Journal of DongHua University, vol. 4, p. 000, 2002.
[14] H. M. Krutka, R. L. Shambaugh, and D. V. Papavassiliou, "Analysis of a melt-blowing die: comparison of CFD and experiments," Industrial & engineering chemistry research, vol. 41, pp. 5125-5138, 2002.
[15] H. M. Krutka, R. L. Shambaugh, and D. V. Papavassiliou, "Effects of the polymer fiber on the flow field from a slot melt blowing die," Industrial & Engineering Chemistry Research, vol. 47, pp. 935-945, 2008.
[16] 成园玲, "加装辅助喷嘴的熔喷气体流场研究," 苏州大学, 2013.
[17] 董家斌, "加装辅助喷嘴的熔喷非织造聚合物拉伸模型," 苏州大学, 2013.
[18] 承婷婷, "加装辅助喷嘴的熔喷非织造气体流场及聚合物拉伸研究," 蘇州大學, 2014.
[19] D. H. Tan, P. K. Herman, A. Janakiraman, F. S. Bates, S. Kumar, and C. W. Macosko, "Influence of Laval nozzles on the air flow field in melt blowing apparatus," Chemical engineering science, vol. 80, pp. 342-348, 2012.
[20] A. Blim, L. Jarecki, and S. Blonski, "Modeling of pneumatic melt drawing of polypropylene super-thin fibers in the Laval nozzle," Bulletin of the Polish Academy of Sciences: Technical Sciences, vol. 62, pp. 43-54, 2014.
校內:2022-01-01公開