簡易檢索 / 詳目顯示

研究生: 蔡松霖
Tsai, Sung-Lin
論文名稱: 利用負介電泳和液體介電泳產生奈升級液珠於單一粒子捕捉器之研究
Creation of Nano-liter Droplets for Single-Particle Trapping Utilizing Negative Dielectrophoresis and Liquid Dielectrophoresis
指導教授: 張凌昇
Jang, Ling-Sheng
學位類別: 碩士
Master
系所名稱: 工學院 - 奈米科技暨微系統工程研究所
Institute of Nanotechnology and Microsystems Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 62
中文關鍵詞: 液體介電泳介電泳
外文關鍵詞: liquid dielectrophoresis (LDEP), dielectrophoresis (DEP)
相關次數: 點閱:148下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在最近十年,微機電技術比傳統技術來的越來越有效率。介電泳是一種以電性操作微米顆粒且容易與其他檢測技術相結合的方法。自一九五一年起,介電泳現象定義為極化粒子在高電場下移動的情形,此外,負介電泳最適合用來捕捉溶液中的微粒,與介電泳相比,液體介電泳可視為介電泳中的特例,液體介電泳為液體朝非均勻電場區域中較高電場流動的現象,其中也討論了介電泳現象與液體介電泳現象的實驗與理論。本研究利用液體介電泳方式,建立二十奈升的去離子水液珠,其中液珠包含已經定位好的十微米以及十五微米的塑膠顆粒。本研究亦完成了一個在平行板電極上同時應用介電泳與液體介電泳的方法。

    In recent ten years, Micro-Electro-Mechanical Systems (MEMS) technology is established and is more efficient rather than the conventional ones. dielectrophoresis (DEP) is one of the electrical methods to manipulate μ-particles, and can be easily combined with subsequent analyses based on electric fields. In 1951, DEP was first defined as polarizable particles moving into regions of higher electric field intensity. Besides, negative DEP is practicable in trapping particles suspended in the liquid. In contrast to DEP, liquid DEP (LDEP) is a particular case of DEP. The phenomenology of liquid DEP is that the dielectric liquid tends to flow towards to the regions of high electric field intensity under a non-uniform electric field. Additionally, the relationship between DEP and LDEP is discussed experimentally and theoretically. Furthermore, this research presents a method to create a 20 nl droplet of deionized water by LDEP. Finally, the creation of a water droplet containing 10 μm and 15 μm polystyrene beads at the desired location from the continuous flow driven by LDEP is successfully demonstrated using the developed method. This work presents a practical method of DEP and LDEP based on parallel electrodes for single particle trapping application.

    中文摘要 I ABSTRACT II ACKNOWLEDGEMENT III CHAPTER 1 INTRODUCTION 1 1.1 Motivation and background 1 1.2 The research flowchart 3 CHAPTER 2 THEORY AND PAPER REVIEW 6 2.1 Literature review 6 2.2 LDEP force theory 16 2.2.1 The phenomenology of liquid DEP 16 2.2.2 Dynamic model for the liquid moving on the LDEP electrode 16 2.3 DEP force theory 26 2.3.1 Neutral particles under the cDEP effect 26 2.3.2 Positive and negative DEP forces 29 2.3.3 Different kinds of dielectrophoretic Force 34 CHAPTER 3 FABRICATIONS 38 3.1 Fabrications of LDEP and DEP devices 38 3.2 Photolithography, etching, and spin process 38 3.2.1 Glass substrate process 38 3.2.2 Top plate process 42 3.3 Particles preparation 43 CHAPTER 4 EXPERIMENTAL SETUP AND RESULTS 44 4.1 LDEP and DEP electrode configuration 44 4.2 The experimental step 47 4.3 The accumulation of particles under nDEP effect 55 4.4 Single-bead capturing 56 CHAPTER 5 CONCLUSIONS AND FUTURE WORK 57 5.1 Conclusions 57 5.2 Future work 58 REFERENCES 59

    [1] Shih-Kang Fan, “Digital Microfluidics Cross-Reference EWOD Actuation: Principle, Device and System”, Unversity of California Los Angeles, Degree doctor of philosophy, 2003.
    [2] Shih-Chyn Lin, “Study of WEOD-based Actuation for Digital Microfluidic System”, National Central University, Degree of master, June 2004.
    [3] R Ahmed and T B Jones, “Optimized liquid DEP droplet dispensing”, Joural of micromechanics and microengineering, 17, 1052–1058,2007.
    [4] Jones T B, Gunji M, Washizu M and Feldman M J, “Dielectrophoretic liquid actuation and nanodroplet formation” J. Appl. Phys. 89 1441–8, 2001.
    [5] Herbert A. Pohl, “Dielectrophoresis”, Cambridge Univ. Press, Cambridge, 1978.
    [6] Herbert A. Pohl, “Some Effects of Nonuniform Fields on Dielectrics”, Journal of Applied Physics, 29 1182-1188, 1958.
    [7] Adam Rosenthal*y and Joel Voldman*, “Dielectrophoretic Traps for Single-Particle Patterning”, Biophysical Journal, 88, 2193–2205, 2005
    [8] HA Pohl, “The Motion and Precipitation of Suspensoids in Divergent Electric Fields,” J. Appl. Phys. 22, 869 ,1951.
    [9] T. B. Jones and J. R. Melcher, “Dynamics of electromechanical flow structures”, Phys. Fluids 16, 393 ,1973.
    [10] T. B. Jones, J. Appl. Phys. 45, 1487,1974.
    [11] H. A. Pohl, “The motion and Precipitation of Suspensoids in Divergent Electric Fields,” Journal of Applied Physics, vol. 22, pp.869-871, 1951.
    [12] Bakewell DJG, Hughes MP, Milner JJ, and Morgan H, “Dielectrophoretic manipulation of avidin and DNA,” Proceedings 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 1998
    [13] Morgan H, Hughes MP, and Green NG “Separation of Sub-Micron Particles by Dielectrophoresis,” Biochip Journal, vol. 77, pp. 516-525, 1999.
    [14] J. Yang, Y. Huang, X. B.Wang, F. F. Becker, and P. R. C. Gascoyne, “Differential analysis of human leukocytes by dielectrophoretic field-flow-fractionation,” Biophysical Journal, vol. 78, no. 5, pp. 2680-2689, 2000.
    [15] Pohl, Herbert A., and Pollock, Kent, “Electrode geometries for various dielectrophoretic force laws,” Journal of Electrostatics, vol. 5, pp. 337-342, 1978.
    [16] G. Fuhr, T. Mller, T. Schnelle, R. Hagedorn, A. Voigt, S. Fiedler, W. M. Arnold, U. Zimmermann, B.Wagner, and A. Heuberger, “Radio-frequency microtools for particle and live cell manipulation,” Naturwissenschaften, vol. 81, pp. 528-535, 1994.
    [17] G. H. Markx and R. Pethig, “Dielectrophoretic separation of cells: Continuous separation,” Biotechnology and Bioengineering, vol. 45, pp. 337-343, 1995.
    [18] Wang X-B, Huang Y, Becker F F and Gascoyne P R C, “A unified theory of dielectrophoresis and travelling-wave dielectrophoresis,” Journal of Physics D: Applied Physics, vol. 27, pp. 1571-1574, 1994.
    [19] H Morgan, N G Green, M P Hughes, W Monaghan and T C Tan, “Large-area travelling-wave dielectrophoresis particle separator,” Journal Micromech. Microeng, vol. 7, pp. 65-70, 1997.
    [20] X B Wang, Y Huang, X Wang, F F Becker, and P R Gascoyne, “Dielectrophoretic manipulation of cells with spiral electrodes,” Journal of Electrostatics, pp. 277-295, 1997.
    [21] Dalton, A.D. Goater, J. Drysdale, and R. Pethig,” Physicochemical and Engineering Aspects,” Colloids and Surfaces A, vol. 195, pp. 263-268, 2001.
    [22] Chengjun Huang, Ailiang Chen, Lei Wang, Min Guo, and Jun Yu, “Electrokinetic measurements of dielectric properties of membrane for apoptotic HL-60 cells on chip-based device,” Biomed Microdevices, vol. 9, pp. 335-343, 2007.
    [23] T. B. Jones, Dynamics of Dielectrophoretic Liquid Microactuation, 4th Int'l Conference on Applied Electrostatics (2001) 1-8.

    下載圖示 校內:2012-08-12公開
    校外:2012-08-12公開
    QR CODE