簡易檢索 / 詳目顯示

研究生: 鄭易宸
Cheng, Yi-Chen
論文名稱: 基於廣義 Kerker 效應實現高效率穿透式電漿子超穎表面
Highly-transmissive Plasmonic Metasurfaces via Generalized Kerker effects
指導教授: 吳品頡
Wu, Pin-Chieh
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 90
中文關鍵詞: 超穎表面表面電漿子廣義 Kerker 條件幾何相位
外文關鍵詞: Plasmonic metasurface, Generalized Kerker condition, Geometric phase
相關次數: 點閱:67下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 人造次波長等級的超穎表面在透過入射電磁波激發出表面電漿共振,其產生的共
    振模態可以對偏振、相位、振幅、角動量進行調控,這些特點為平面光學元件、系統
    提供了一個有未來發展性的平台,例如:微型光譜儀(compact spectrometer)和深度傳感
    器(depth sensor)。由於金屬共振產生的焦耳損失較高,因此電漿子超穎表面的工作效
    率在本質上受到限制,特別是在製作穿透式元件上。為了解決這個問題,最近人們對
    利用介電質來設計超穎表面很感興趣,它們在共振時可忽略的吸收損耗,且介電質本
    身透射率高,所以常用於製作穿透式元件,但介電質超穎表面中的高深寬比明顯地增
    加了製程難度。因此,本論文致力於研究金屬穿透式超穎表面,期望在光學波段上實
    現高透射率且製程容易的超穎表面,我們將廣義 Kerker 條件的概念引入電漿子超穎
    表面中,並運用巴比涅原理的結構設計方法,在玻璃基板上設計單元結構,由金屬表
    面的正結構和金屬孔洞之負結構所組成,中間為光阻的奈米柱,透過同時激發電偶極
    矩、磁偶極矩、電四極矩、磁四極矩與磁環型線圈矩,並且滿足廣義 Kerker 條件。因
    此正向散射得到了顯著增強,且同時具有最小的背向散射,在通訊波段下,實現了最
    新的交叉偏振轉換效率超過 50%的電漿子超穎表面,這較以往的研究結果要來得高
    出許多。接下來,我們將幾何相位法與我們設計的電漿子惠更斯超穎表面作結合,製
    作兩種不同的光學元件,第一個是幾何相位梯度超穎表面,它有著能將光束偏折至特
    定方向之作用;第二個是平面聚焦超穎透鏡,它可以將入射光偏振轉換並有效地聚焦
    之功用,我們利用電子束微影系統成功地製作這兩項元件,展示了高效能電漿子超穎
    表面實際應用的可行性,對未來提供一個嶄新的研究方向。

    Through introducing nanophotonic resonant modes into sub-wavelength structures, metasurfaces show a great capability for phase and amplitude modulation of light. Due to high Joule loss in metals, plasmonic metasurfaces suffer from low working efficiency, especially for the transmission scheme. Although high-index dielectric metasurfaces possess high transmission intensity, high aspect ratio of the dielectric metasurfaces make them being difficult for manufacturing.
    In this work, we proposed and demonstrated highly-transmissive plasmonic metasurfaces via generalized Kerker condition. The optimized metasurface shows a state-of-the-art circular polarization conversion efficiency beyond 50% at telecom wavelengths. As for highlights of our metasurface, a beam deflector and a focusing metalens are demonstrated by incorporating the high-performance plasmonic metasurface with the geometric phase method. Due to its broadband and high transmission efficiency properties, the success of this work will offer a promising platform for developing high-performance flat optical components, integrated optoelectronic devices and systems, just named a few.

    口試合格證明 I 中文摘要 II Extended Abstract III 致謝 IX 目錄 X 圖目錄 XII 第一章 緒論 1 1.1 前言 1 1.2 超穎表面簡介 1 1.2.1 發展背景和特性 1 1.2.2 超穎表面與廣義司乃爾定律 2 1.2.3 金屬與介電質超穎表面 4 1.2.4 多極矩展開 9 1.3 廣義Kerker共振原理簡介 11 1.3.1 惠更斯共振機制與第一Kerker條件 11 1.3.2 廣義 Kerker 條件 16 1.3.3 巴比涅原理 20 1.4 研究目的 23 第二章 實驗方法 25 2.1 前言 25 2.2 電子束半導體製程方法介紹 26 2.2.1 旋轉塗佈儀 26 2.2.2 熱蒸鍍機 29 2.2.3 電子束曝寫系統 30 2.2.4 樣品製作流程 36 2.3 數值模擬方法 41 2.4 光學量測系統 46 2.4.1 雷射特性和基本介紹 46 2.4.2 光路架設 50 第三章 結果、分析與討論 55 3.1 前言 55 3.2 廣義惠更斯電漿子超穎元件 55 3.2.1 單元結構設計與共振模態分析 55 3.2.2 高效能穿透式光束偏轉電漿子超穎表面 62 3.2.3 高效能穿透式電漿子超穎透鏡 76 第四章 結論與未來展望 86 參考文獻 87

    [1] A. Li, S. Singh, and D. Sievenpiper, "Metasurfaces and their applications," Nanophotonics 7, 989-1011 (2018).
    [2] V. G. Veselago, " The electrodynamics of substances with simultaneously negative values of ε and μ," Phys. Usp. 10, 509-514 (1968).
    [3] D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, "Metamaterials and negative refractive index," Science 305, 788 (2004).
    [4] T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
    [5] M. B. Sobnack, W. C. Tan, N. P. Wanstall, T. W. Preist, and J. R. Sambles, "Stationary surface plasmons on a zero-order metal grating," Phys. Rev. Lett. 80, 5667-5670 (1998).
    [6] W. C. Liu, and D. P. Tsai, "Optical tunneling effect of surface plasmon polaritons and localized surface plasmon resonance," Phys. Rev. B 65, 155423 (2002).
    [7] N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, "Light propagation with phase discontinuities: Generalized laws of reflection and refraction," Science 334, 333 (2011).
    [8] Ho, You Zhe, et. al, "Anomalous reflection from metasurfaces with gradient phase distribution below 2π," Appl. Phys. Express 9, 072502 (2017).
    [9] T. Jinchao, S. Fei, M. Junhuizhi, Y. M. T. Landobasa, Q. Li, and Z. Dao Hua, "Surface plasmon enhanced infrared photodetection," Opto-Electron Adv 3, 180026 (2019).
    [10] L.-L. Tay, et. al, "Surface plasmons," Sci. Rep. 135, 1186-1195 (2016).
    [11] R. Marchetti, C. Lacava, A. Khokhar, X. Chen, I. Cristiani, D. J. Richardson, G. T. Reed, P. Petropoulos, and P. Minzioni, "High-efficiency grating-couplers: demonstration of a new design strategy," Sci. Rep. 7, 16670 (2017).
    [12] Y. Huang, S. Zhong, T. Shi, Y.-C. Shen, and D. Cui, "Trapping waves with tunable prism-coupling terahertz metasurfaces absorber," Opt. Express 27, 25647-25655 (2019).
    [13] Y. Hong, Y.-M. Huh, D. S. Yoon, and J. Yang, "Nanobiosensors based on localized surface plasmon resonance for biomarker detection," J. Nanomater. 2012, 759830 (2012).
    [14] Y. Kivshar, and A. Miroshnichenko, "Meta-optics with Mie resonances," Opt. Photon. News 28, 24-31 (2017).
    [15] R. Alaee, C. Rockstuhl, and I. Fernandez-Corbaton, "An electromagnetic multipole expansion beyond the long-wavelength approximation," Opt. Commun. 407, 17-21 (2018).
    [16] N. Papasimakis, V. A. Fedotov, V. Savinov, T. A. Raybould, and N. I. Zheludev, 88 "Electromagnetic toroidal excitations in matter and free space," Nat. Mater. 15, 263271 (2016).
    [17] K. Marinov, A. D. Boardman, V. A. Fedotov, and N. Zheludev, "Toroidal metamaterial," New J. Phys. 9, 324 (2007).
    [18] C. Cui, S. Yuan, X. Qiu, L. Zhu, Y. Wang, Y. Li, J. Song, Q. Huang, C. Zeng, and J. Xia, "Light emission driven by magnetic and electric toroidal dipole resonances in a silicon metasurface," Nanoscale 11, 14446-14454 (2019).
    [19] M. Kerker, D. S. Wang, and C. L. Giles, "Electromagnetic scattering by magnetic spheres," J. Opt. Soc. Am. 73, 765-767 (1983).
    [20] https://mathworld. wolfram. com/SphericalCoordinates.html
    [21] C. Pfeiffer, and A. Grbic, "Metamaterial Huygens' surfaces: tailoring wave fronts with reflectionless sheets," Phys. Rev. Lett. 110, 197401 (2013).
    [22] F. Monticone, N. M. Estakhri, and A. Alù, "Full control of nanoscale optical transmission with a composite metascreen," Phys. Rev. Lett. 110, 203903 (2013).
    [23] M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, "High-efficiency dielectric Huygens’ surfaces," Adv. Opt. Mater. 3, 813-820 (2015).
    [24] R. Alaee, R. Filter, D. Lehr, F. Lederer, and C. Rockstuhl, "A generalized Kerker condition for highly directive nanoantennas," Opt. Lett. 40, 2645-2648 (2015).
    [25] A. Pors, S. K. H. Andersen, and S. I. Bozhevolnyi, "Unidirectional scattering by nanoparticles near substrates: generalized Kerker conditions," Opt. Express 23, 2880828828 (2015).
    [26] W. Liu, and Y. S. Kivshar, "Generalized Kerker effects in nanophotonics and metaoptics," Opt. Express 26, 13085-13105 (2018).
    [27] W. Liu, J. Zhang, B. Lei, H. Ma, W. Xie, and H. Hu, "Ultra-directional forward scattering by individual core-shell nanoparticles," Opt. Express 22, 16178-16187 (2014).
    [28] L. Zhang, T. Koschny, and C. Soukoulis, "Creating double negative index materials using the Babinet principle with one metasurface," Phys. Rev. B 87, 045101 (2013).
    [29] T. Zentgraf, T. P. Meyrath, A. Seidel, S. Kaiser, H. Giessen, C. Rockstuhl, and F. Lederer, "Babinet's principle for optical frequency metamaterials and nanoantennas," Phys. Rev. B 76, 033407 (2007).
    [30] http://cmnst.ncku.edu.tw/p/412-1006-13238.php?Lang=zh-tw
    [31] D. E. Bornside, C. W. Macosko, and L. E. Scriven, "Spin coating: One‐dimensional model," J. Appl. Phys. 66, 5185-5193 (1989).
    [32] https://wiki.ucsb.edu/w/images/5/59/MaN2403-E-Beam-Resist-Datasheet.pdf
    [33] A. Lakhtakia, and R. J. Martín-Palma, et. al, "Engineered biomimicry," Elsevier. 29, 89 225 (2013).
    [34] T. H. P. Chang, "Proximity effect in electron‐beam lithography," J. Vac. Sci. Technol. 12, 1271-1275 (1975).
    [35] M. P. Delmo, S. Yamamoto, S. Kasai, T. Ono, and K. Kobayashi, "Large positive magnetoresistive effect in silicon induced by the space-charge effect," Nature 457, 1112-1115 (2009).
    [36] S. Tong, H. Poon, and D. Snider, "Importance of multiple forward scattering in medium-and high-energy electron emission or diffraction spectroscopies," Phys. Rev. B 32, 2096 (1985).
    [37] L. Jackel, R. Howard, P. Mankiewich, H. G. Craighead, and R. Epworth, "Beam energy effects in electron beam lithography: The range and intensity of backscattered exposure," Appl. Phys. Lett. 45, 698-700 (1984).
    [38] https://www.nktphotonics.com/lasers-fibers/
    [39] https://www.hamamatsu.com/us/en/product/type/C14041-10U/index.html
    [40] G. Yang, S. Zhang, J. Hu, M. Fujiki, and G. Zou, "The chirality Induction and modulation of polymers by circularly polarized light," Symmetry 11 (2019).
    [41] F. De Zela, et. al, "The Pancharatnam-Berry phase: theoretical and experimental aspects," Theoretical concepts of quantum mechanics (2012).
    [42] S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, C. Hung Chu, J.-W. Chen, S.-H. Lu, J. Chen, B. Xu, C.-H. Kuan, T. Li, S. Zhu, and D. P. Tsai, "Broadband achromatic optical metasurface devices," Nat. Commun. 8, 187 (2017).
    [43] C. Jin, J. Zhang, and C. Guo, "Metasurface integrated with double-helix point spread function and metalens for three-dimensional imaging," Nanophotonics 8, 451-458 (2019).
    [44] J. Zhang, M. ElKabbash, R. Wei, S. C. Singh, B. Lam, and C. Guo, "Plasmonic metasurfaces with 42.3% transmission efficiency in the visible," Light Sci. Appl. 8, 53 (2019).
    [45] S. Pancharatnam, "Generalized theory of interference and its applications," P NATL A SCI INDIA A 44, 398-417 (1956).
    [46] M. V. Berry, et. al, "Quantal phase factors accompanying adiabatic changes," Math. Phys. Sci. 392, 45-57 (1984).
    [47] E. Cohen, H. Larocque, F. Bouchard, F. Nejadsattari, Y. Gefen, and E. Karimi, "Geometric phase from Aharonov–Bohm to Pancharatnam–Berry and beyond," Nat. Rev. Phys. 1, 437-449 (2019).
    [48] M. Kang, T. Feng, H.-T. Wang, and J. Li, "Wave front engineering from an array of thin aperture antennas," Opt. Express 20, 15882-15890 (2012).
    [49] P. C. Wu, W.-Y. Tsai, W. T. Chen, Y.-W. Huang, T.-Y. Chen, J.-W. Chen, C. Y. Liao, C. 90 H. Chu, G. Sun, and D. P. Tsai, "Versatile polarization generation with an aluminum plasmonic metasurface," Nano Letters 17, 445-452 (2017).

    下載圖示 校內:2024-07-08公開
    校外:2024-07-08公開
    QR CODE