| 研究生: |
鄭易宸 Cheng, Yi-Chen |
|---|---|
| 論文名稱: |
基於廣義 Kerker 效應實現高效率穿透式電漿子超穎表面 Highly-transmissive Plasmonic Metasurfaces via Generalized Kerker effects |
| 指導教授: |
吳品頡
Wu, Pin-Chieh |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 90 |
| 中文關鍵詞: | 超穎表面 、表面電漿子 、廣義 Kerker 條件 、幾何相位 |
| 外文關鍵詞: | Plasmonic metasurface, Generalized Kerker condition, Geometric phase |
| 相關次數: | 點閱:67 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
人造次波長等級的超穎表面在透過入射電磁波激發出表面電漿共振,其產生的共
振模態可以對偏振、相位、振幅、角動量進行調控,這些特點為平面光學元件、系統
提供了一個有未來發展性的平台,例如:微型光譜儀(compact spectrometer)和深度傳感
器(depth sensor)。由於金屬共振產生的焦耳損失較高,因此電漿子超穎表面的工作效
率在本質上受到限制,特別是在製作穿透式元件上。為了解決這個問題,最近人們對
利用介電質來設計超穎表面很感興趣,它們在共振時可忽略的吸收損耗,且介電質本
身透射率高,所以常用於製作穿透式元件,但介電質超穎表面中的高深寬比明顯地增
加了製程難度。因此,本論文致力於研究金屬穿透式超穎表面,期望在光學波段上實
現高透射率且製程容易的超穎表面,我們將廣義 Kerker 條件的概念引入電漿子超穎
表面中,並運用巴比涅原理的結構設計方法,在玻璃基板上設計單元結構,由金屬表
面的正結構和金屬孔洞之負結構所組成,中間為光阻的奈米柱,透過同時激發電偶極
矩、磁偶極矩、電四極矩、磁四極矩與磁環型線圈矩,並且滿足廣義 Kerker 條件。因
此正向散射得到了顯著增強,且同時具有最小的背向散射,在通訊波段下,實現了最
新的交叉偏振轉換效率超過 50%的電漿子超穎表面,這較以往的研究結果要來得高
出許多。接下來,我們將幾何相位法與我們設計的電漿子惠更斯超穎表面作結合,製
作兩種不同的光學元件,第一個是幾何相位梯度超穎表面,它有著能將光束偏折至特
定方向之作用;第二個是平面聚焦超穎透鏡,它可以將入射光偏振轉換並有效地聚焦
之功用,我們利用電子束微影系統成功地製作這兩項元件,展示了高效能電漿子超穎
表面實際應用的可行性,對未來提供一個嶄新的研究方向。
Through introducing nanophotonic resonant modes into sub-wavelength structures, metasurfaces show a great capability for phase and amplitude modulation of light. Due to high Joule loss in metals, plasmonic metasurfaces suffer from low working efficiency, especially for the transmission scheme. Although high-index dielectric metasurfaces possess high transmission intensity, high aspect ratio of the dielectric metasurfaces make them being difficult for manufacturing.
In this work, we proposed and demonstrated highly-transmissive plasmonic metasurfaces via generalized Kerker condition. The optimized metasurface shows a state-of-the-art circular polarization conversion efficiency beyond 50% at telecom wavelengths. As for highlights of our metasurface, a beam deflector and a focusing metalens are demonstrated by incorporating the high-performance plasmonic metasurface with the geometric phase method. Due to its broadband and high transmission efficiency properties, the success of this work will offer a promising platform for developing high-performance flat optical components, integrated optoelectronic devices and systems, just named a few.
[1] A. Li, S. Singh, and D. Sievenpiper, "Metasurfaces and their applications," Nanophotonics 7, 989-1011 (2018).
[2] V. G. Veselago, " The electrodynamics of substances with simultaneously negative values of ε and μ," Phys. Usp. 10, 509-514 (1968).
[3] D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, "Metamaterials and negative refractive index," Science 305, 788 (2004).
[4] T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
[5] M. B. Sobnack, W. C. Tan, N. P. Wanstall, T. W. Preist, and J. R. Sambles, "Stationary surface plasmons on a zero-order metal grating," Phys. Rev. Lett. 80, 5667-5670 (1998).
[6] W. C. Liu, and D. P. Tsai, "Optical tunneling effect of surface plasmon polaritons and localized surface plasmon resonance," Phys. Rev. B 65, 155423 (2002).
[7] N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, "Light propagation with phase discontinuities: Generalized laws of reflection and refraction," Science 334, 333 (2011).
[8] Ho, You Zhe, et. al, "Anomalous reflection from metasurfaces with gradient phase distribution below 2π," Appl. Phys. Express 9, 072502 (2017).
[9] T. Jinchao, S. Fei, M. Junhuizhi, Y. M. T. Landobasa, Q. Li, and Z. Dao Hua, "Surface plasmon enhanced infrared photodetection," Opto-Electron Adv 3, 180026 (2019).
[10] L.-L. Tay, et. al, "Surface plasmons," Sci. Rep. 135, 1186-1195 (2016).
[11] R. Marchetti, C. Lacava, A. Khokhar, X. Chen, I. Cristiani, D. J. Richardson, G. T. Reed, P. Petropoulos, and P. Minzioni, "High-efficiency grating-couplers: demonstration of a new design strategy," Sci. Rep. 7, 16670 (2017).
[12] Y. Huang, S. Zhong, T. Shi, Y.-C. Shen, and D. Cui, "Trapping waves with tunable prism-coupling terahertz metasurfaces absorber," Opt. Express 27, 25647-25655 (2019).
[13] Y. Hong, Y.-M. Huh, D. S. Yoon, and J. Yang, "Nanobiosensors based on localized surface plasmon resonance for biomarker detection," J. Nanomater. 2012, 759830 (2012).
[14] Y. Kivshar, and A. Miroshnichenko, "Meta-optics with Mie resonances," Opt. Photon. News 28, 24-31 (2017).
[15] R. Alaee, C. Rockstuhl, and I. Fernandez-Corbaton, "An electromagnetic multipole expansion beyond the long-wavelength approximation," Opt. Commun. 407, 17-21 (2018).
[16] N. Papasimakis, V. A. Fedotov, V. Savinov, T. A. Raybould, and N. I. Zheludev, 88 "Electromagnetic toroidal excitations in matter and free space," Nat. Mater. 15, 263271 (2016).
[17] K. Marinov, A. D. Boardman, V. A. Fedotov, and N. Zheludev, "Toroidal metamaterial," New J. Phys. 9, 324 (2007).
[18] C. Cui, S. Yuan, X. Qiu, L. Zhu, Y. Wang, Y. Li, J. Song, Q. Huang, C. Zeng, and J. Xia, "Light emission driven by magnetic and electric toroidal dipole resonances in a silicon metasurface," Nanoscale 11, 14446-14454 (2019).
[19] M. Kerker, D. S. Wang, and C. L. Giles, "Electromagnetic scattering by magnetic spheres," J. Opt. Soc. Am. 73, 765-767 (1983).
[20] https://mathworld. wolfram. com/SphericalCoordinates.html
[21] C. Pfeiffer, and A. Grbic, "Metamaterial Huygens' surfaces: tailoring wave fronts with reflectionless sheets," Phys. Rev. Lett. 110, 197401 (2013).
[22] F. Monticone, N. M. Estakhri, and A. Alù, "Full control of nanoscale optical transmission with a composite metascreen," Phys. Rev. Lett. 110, 203903 (2013).
[23] M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, "High-efficiency dielectric Huygens’ surfaces," Adv. Opt. Mater. 3, 813-820 (2015).
[24] R. Alaee, R. Filter, D. Lehr, F. Lederer, and C. Rockstuhl, "A generalized Kerker condition for highly directive nanoantennas," Opt. Lett. 40, 2645-2648 (2015).
[25] A. Pors, S. K. H. Andersen, and S. I. Bozhevolnyi, "Unidirectional scattering by nanoparticles near substrates: generalized Kerker conditions," Opt. Express 23, 2880828828 (2015).
[26] W. Liu, and Y. S. Kivshar, "Generalized Kerker effects in nanophotonics and metaoptics," Opt. Express 26, 13085-13105 (2018).
[27] W. Liu, J. Zhang, B. Lei, H. Ma, W. Xie, and H. Hu, "Ultra-directional forward scattering by individual core-shell nanoparticles," Opt. Express 22, 16178-16187 (2014).
[28] L. Zhang, T. Koschny, and C. Soukoulis, "Creating double negative index materials using the Babinet principle with one metasurface," Phys. Rev. B 87, 045101 (2013).
[29] T. Zentgraf, T. P. Meyrath, A. Seidel, S. Kaiser, H. Giessen, C. Rockstuhl, and F. Lederer, "Babinet's principle for optical frequency metamaterials and nanoantennas," Phys. Rev. B 76, 033407 (2007).
[30] http://cmnst.ncku.edu.tw/p/412-1006-13238.php?Lang=zh-tw
[31] D. E. Bornside, C. W. Macosko, and L. E. Scriven, "Spin coating: One‐dimensional model," J. Appl. Phys. 66, 5185-5193 (1989).
[32] https://wiki.ucsb.edu/w/images/5/59/MaN2403-E-Beam-Resist-Datasheet.pdf
[33] A. Lakhtakia, and R. J. Martín-Palma, et. al, "Engineered biomimicry," Elsevier. 29, 89 225 (2013).
[34] T. H. P. Chang, "Proximity effect in electron‐beam lithography," J. Vac. Sci. Technol. 12, 1271-1275 (1975).
[35] M. P. Delmo, S. Yamamoto, S. Kasai, T. Ono, and K. Kobayashi, "Large positive magnetoresistive effect in silicon induced by the space-charge effect," Nature 457, 1112-1115 (2009).
[36] S. Tong, H. Poon, and D. Snider, "Importance of multiple forward scattering in medium-and high-energy electron emission or diffraction spectroscopies," Phys. Rev. B 32, 2096 (1985).
[37] L. Jackel, R. Howard, P. Mankiewich, H. G. Craighead, and R. Epworth, "Beam energy effects in electron beam lithography: The range and intensity of backscattered exposure," Appl. Phys. Lett. 45, 698-700 (1984).
[38] https://www.nktphotonics.com/lasers-fibers/
[39] https://www.hamamatsu.com/us/en/product/type/C14041-10U/index.html
[40] G. Yang, S. Zhang, J. Hu, M. Fujiki, and G. Zou, "The chirality Induction and modulation of polymers by circularly polarized light," Symmetry 11 (2019).
[41] F. De Zela, et. al, "The Pancharatnam-Berry phase: theoretical and experimental aspects," Theoretical concepts of quantum mechanics (2012).
[42] S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, C. Hung Chu, J.-W. Chen, S.-H. Lu, J. Chen, B. Xu, C.-H. Kuan, T. Li, S. Zhu, and D. P. Tsai, "Broadband achromatic optical metasurface devices," Nat. Commun. 8, 187 (2017).
[43] C. Jin, J. Zhang, and C. Guo, "Metasurface integrated with double-helix point spread function and metalens for three-dimensional imaging," Nanophotonics 8, 451-458 (2019).
[44] J. Zhang, M. ElKabbash, R. Wei, S. C. Singh, B. Lam, and C. Guo, "Plasmonic metasurfaces with 42.3% transmission efficiency in the visible," Light Sci. Appl. 8, 53 (2019).
[45] S. Pancharatnam, "Generalized theory of interference and its applications," P NATL A SCI INDIA A 44, 398-417 (1956).
[46] M. V. Berry, et. al, "Quantal phase factors accompanying adiabatic changes," Math. Phys. Sci. 392, 45-57 (1984).
[47] E. Cohen, H. Larocque, F. Bouchard, F. Nejadsattari, Y. Gefen, and E. Karimi, "Geometric phase from Aharonov–Bohm to Pancharatnam–Berry and beyond," Nat. Rev. Phys. 1, 437-449 (2019).
[48] M. Kang, T. Feng, H.-T. Wang, and J. Li, "Wave front engineering from an array of thin aperture antennas," Opt. Express 20, 15882-15890 (2012).
[49] P. C. Wu, W.-Y. Tsai, W. T. Chen, Y.-W. Huang, T.-Y. Chen, J.-W. Chen, C. Y. Liao, C. 90 H. Chu, G. Sun, and D. P. Tsai, "Versatile polarization generation with an aluminum plasmonic metasurface," Nano Letters 17, 445-452 (2017).