簡易檢索 / 詳目顯示

研究生: 謝儀蘋
Hsieh, Yi-Ping
論文名稱: 次世代定序技術分析在口腔鱗狀細胞癌中PIP-SAHA標靶的H3K9乙醯化基因
Analyze the PIP-SAHA targeting H3K9 acetylation genes by next generation sequencing in oral squamous cell carcinoma
指導教授: 黃則達
Huang, Tze-Ta
學位類別: 碩士
Master
系所名稱: 醫學院 - 口腔醫學研究所
Institute of Oral Medicine
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 92
中文關鍵詞: 口腔鱗狀細胞癌表觀基因體組蛋白乙醯化次世代定序吡咯咪唑聚醯胺伏立諾他
外文關鍵詞: Oral squamous cell carcinoma, Epigenetic, Histone HK9 acetylation, pyrrole-imidazole polyamides, SAHA
相關次數: 點閱:110下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 口腔鱗狀細胞癌是全世界常見、死亡率高的惡性腫瘤之一。造成口腔鱗狀細胞癌的主要原因包括抽菸、飲酒、嚼檳榔以及人類乳突病毒感染所引起的慢性刺激和發炎。手術切除是目前口腔鱗狀細胞癌主要的治療方式,其他治療包含放射線治療、化學治療以及免疫療法。然而,對於口腔鱗狀細胞癌晚期的病人來說,治療效果很有限。表觀基因體的調控是調控細胞生長發育和基因表現很重要的一個機制。在過去已經有很多的研究證實異常的表觀基因體調控會導致癌症的發生和惡化。表觀基因體療法是一種新治療癌症的方法用來抑制和逆轉導致癌症的表觀基因體修飾。目前表觀基因體標靶藥物對於淋巴瘤治療的效果很好,然而,這些藥物對於實體瘤卻沒有好的治療效果,原因可能為這些藥物缺乏辨識基因序列的專一性。伏立諾他(SAHA)為組蛋白去乙醯酶的抑制劑,其透過調控組蛋白的乙醯化作用來調控基因表現。吡咯咪唑聚酰胺(PIP)是可合成的寡聚物,其可以高親和力與DNA的次溝槽(minor groove)結合。將PIP和SAHA結合可以增加合成藥物對序列的識別,加強結合到特定序列。我們使用次世代定序(NGS)來分析PIP-SAHA特異性結合的基因序列,用於抑制口腔鱗狀細胞癌中的表觀基因體組蛋白乙醯化生物標誌異常調控和逆轉導致癌症的表觀遺傳修飾,藉此開發新型表觀基因體抗癌標靶藥物PIP-SAHA,用於口腔鱗狀細胞癌患者的治療。研究證實PIP-SAHA V藥物可以抑制口腔鱗狀細胞癌細胞株之增生、遷移和侵入能力。並且透過次世代定序的分析證實PIP-SAHA V藥物可以專一性的調控HNF4、RelA以及MyHC基因網絡中的組蛋白H3K9乙醯化和DNA甲基化。

    Oral squamous cell carcinoma (OSCC) is one of the common malignancies worldwide with a high mortality rate. The causes of OSCC include chronic irritation and inflammation from tobacco smoking, alcohol consumption, betel nut chewing, and HPV infection. Surgical ablation is the primary treatment for OSCC, and other therapies include radiotherapy, chemotherapy, and immunotherapy. However, for advanced OSCC, its efficacy is limited. Epigenetic mechanisms are required to maintain normal growth, development and gene expression in different organs. Several studies demonstrated the epigenetic dysregulations in tumorigenesis and cancer development. Epigenetic therapy is a new method of cancer treatment and attempt to inhibit and reverse the epigenetic dysregulations that cause cancer. The epigenetic targeting drugs are effective for lymphoma therapy, however they are not efficacious for solid tumor therapy might because of lacking specificity gene targeting. Vorinostat (SAHA) is a histone deacetylase (HDACs) inhibitor that functions by altering the histone acetylation to modulate gene expression. Hairpin pyrrole-imidazole polyamides (PIP) are synthetic oligomers with programmable sequence recognition that bind the minor groove of DNA with high affinity. Conjugate PIP and SAHA may increase sequence recognition and reverse the epigenetic modifications that cause cancer. We used next generation sequencing (NGS) to analysis SAHA specific recognition gene sequences for targeting the epigenetic deregulation biomarker in OSCC. We confirmed PIP-SAHA V inhibit the proliferation, migration and invasion of oral squamous cell carcinoma cell lines. The PIP-SAHA V specifically regulated HNF4, RelA and MyHC network related gene H3K9 acetylation and DNA methylation.

    摘要 I Abstract III 致謝 VIII 目錄 IX 圖目錄 XIII 表目錄 XIV 第一章 緒論 1 一、 口腔鱗狀細胞癌(oral squamous cell carcinoma) 1 二、 表觀基因體調控(epigenetic regulation) 5 三、 表觀基因體調控與癌症(epigenetic regulation and cancer) 10 三、 表觀基因體療法(epigenetic therapy) 12 四、 伏立諾他(Vorinostat,SAHA) 14 五、 吡咯咪唑聚酰胺pyrrole-imidazole polyamides,PIP 14 六、 研究動機 15 第二章 實驗材料與方法 17 一、 細胞培養(Cell culture) 17 1. 細胞株(Cell line) 17 2. 細胞解凍(Cell thawing) 18 3. 細胞繼代培養(Subculture) 18 4. 細胞凍存(Cell freezing) 19 二、 PIP-SAHA藥物配製(PIP-SAHA preparation) 19 三、 甲基化DNA純化(Methylated DNA elution) 20 1. PIP-SAHA V藥物處理(PIP-SAHA V treatment) 21 2. DNA萃取(DNA extraction) 22 3. DNA片段化(DNA fragmentation) 23 4. 分離甲基化DNA 23 四、 染色質免疫沉澱(Chromatin immunoprecipitation,ChIP) 25 1. 固定染色質與染色質萃取(Fixation and chromatin extraction) 25 2. 染色質震斷(chromatin shearing) 26 3. 免疫沉澱(Immunoprecipitation,IP) 27 4. 純化DNA(DNA elution) 28 五、 次世代定序(Next Generation sequencing,NGS) 28 1. 放大(Amplify the library) 29 2. 末端修復並純化ChIP DNA(End-repair and purify the ChIP DNA) 30 3. 篩選片段大小並純化末端修復的ChIP DNA(Size-select and purify the end-repaired ChIP DNA) 31 4. 連接adapters、缺口修復並純化ChIP DNA(Ligate adapters, nick repair, and purify the ligated ChIP DNA) 32 5. 次世代定序數據之生物資訊分析(Bioinformatic analysis of next-generation sequencing data) 33 六、 細胞增生分析(Proliferation assay) 34 七、 傷口癒合分析(Wound healing assay) 34 八、 Transwell細胞遷移能力分析(Transwell migration assay) 35 九、 Transwell細胞侵入能力分析(Transwell invasion assay) 36 十、 RNA表現量分析(RNA expression assay) 38 1. RNA萃取(RNA extraction) 38 2. 逆轉錄聚合酶鏈式反應(reverse transcription-PCR,RT-PCR) 39 3. 即時定量聚合酶連鎖反應(Real-time Quantitative Polymerase Chain Reaction,Q-PCR) 40 第三章 實驗結果 42 一、 PIP-SAHA V藥物對口腔鱗狀細胞癌細胞株之影響 42 二、 次世代定序結果 44 三、 PIP-SAHA V藥物所調控之訊號路徑 46 第四章 討論 48 第五章 結論 53 參考文獻 54 圖表 63 補充資料 79

    1. Montero, P.H. and S.G. Patel, Cancer of the oral cavity. Surg Oncol Clin N Am, 2015. 24(3): p. 491-508.
    2. Bray, F., et al., Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2018. 68(6): p. 394-424.
    3. Tanaka, T., M. Tanaka, and T. Tanaka, Oral carcinogenesis and oral cancer chemoprevention: a review. Patholog Res Int, 2011. 2011: p. 431246.
    4. Speight, P.M. and P.M. Farthing, The pathology of oral cancer. Bdj, 2018. 225: p. 841.
    5. Scully, C. and J. Bagan, Oral squamous cell carcinoma overview. Oral Oncol, 2009. 45(4-5): p. 301-8.
    6. Nair, U., H. Bartsch, and J. Nair, Alert for an epidemic of oral cancer due to use of the betel quid substitutes gutkha and pan masala: a review of agents and causative mechanisms. Mutagenesis, 2004. 19(4): p. 251-62.
    7. Carossa, S., et al., Oral nitric oxide during plaque deposition. Eur J Clin Invest, 2001. 31(10): p. 876-9.
    8. Nair, U.J., et al., Role of lime in the generation of reactive oxygen species from betel-quid ingredients. Environ Health Perspect, 1992. 98: p. 203-5.
    9. Friesen, M., et al., Formation of reactive oxygen species and of 8-hydroxy-2'-deoxyguanosine in DNA in vitro with betel-quid ingredients. IARC Sci Publ, 1988(89): p. 417-21.
    10. Ogden, G.R., Alcohol and oral cancer. Alcohol, 2005. 35(3): p. 169-73.
    11. Morse, D.E., et al., Smoking and drinking in relation to oral cancer and oral epithelial dysplasia. Cancer Causes Control, 2007. 18(9): p. 919-29.
    12. Reidy, J., E. McHugh, and L.F. Stassen, A review of the relationship between alcohol and oral cancer. Surgeon, 2011. 9(5): p. 278-83.
    13. Lin, W.J., et al., Smoking, alcohol, and betel quid and oral cancer: a prospective cohort study. J Oncol, 2011. 2011: p. 525976.
    14. Gupta, B., et al., Associations between oral hygiene habits, diet, tobacco and alcohol and risk of oral cancer: A case-control study from India. Cancer Epidemiol, 2017. 51: p. 7-14.
    15. Geng, Z.L., et al., [Correlation between endogenous harmful components in mainstream cigarette smoke and chemical constituents in tobacco leaves]. Ying Yong Sheng Tai Xue Bao, 2015. 26(5): p. 1447-53.
    16. Chen, Z., et al., Human papillomavirus (HPV) types 101 and 103 isolated from cervicovaginal cells lack an E6 open reading frame (ORF) and are related to gamma-papillomaviruses. Virology, 2007. 360(2): p. 447-53.
    17. Whiteside, M.A., E.M. Siegel, and E.R. Unger, Human papillomavirus and molecular considerations for cancer risk. Cancer, 2008. 113(10 Suppl): p. 2981-94.
    18. Kumar, M., et al., Oral cancer: Etiology and risk factors: A review. J Cancer Res Ther, 2016. 12(2): p. 458-63.
    19. Adams, S., et al., Ultraviolet Radiation Exposure and the Incidence of Oral, Pharyngeal and Cervical Cancer and Melanoma: An Analysis of the SEER Data. Anticancer Res, 2016. 36(1): p. 233-7.
    20. Rivera, C., Essentials of oral cancer. Int J Clin Exp Pathol, 2015. 8(9): p. 11884-94.
    21. Kowalski, L.P. and H.F. Kohler, Relevant changes in the AJCC 8th edition staging manual for oral cavity cancer and future implications. Chin Clin Oncol, 2019.
    22. Shah, J.P. and Z. Gil, Current concepts in management of oral cancer--surgery. Oral Oncol, 2009. 45(4-5): p. 394-401.
    23. Majchrzak, E., et al., Oral cavity and oropharyngeal squamous cell carcinoma in young adults: a review of the literature. Radiol Oncol, 2014. 48(1): p. 1-10.
    24. Huang, S.H. and B. O'Sullivan, Oral cancer: Current role of radiotherapy and chemotherapy. Med Oral Patol Oral Cir Bucal, 2013. 18(2): p. e233-40.
    25. Furness, S., et al., Interventions for the treatment of oral cavity and oropharyngeal cancer: chemotherapy. Cochrane Database Syst Rev, 2011(4): p. Cd006386.
    26. Hartner, L., Chemotherapy for Oral Cancer. Dent Clin North Am, 2018. 62(1): p. 87-97.
    27. He, C. and P. Cole, Introduction: epigenetics. Chem Rev, 2015. 115(6): p. 2223-4.
    28. Garcia, M.P. and A. Garcia-Garcia, Epigenome and DNA methylation in oral squamous cell carcinoma. Methods Mol Biol, 2012. 863: p. 207-19.
    29. Barbara, M.A. and Y. Abdilla, An Introduction to Epigenetics. Neonatal Netw, 2017. 36(3): p. 124-128.
    30. Moore, L.D., T. Le, and G. Fan, DNA methylation and its basic function. Neuropsychopharmacology, 2013. 38(1): p. 23-38.
    31. Bernstein, B.E., A. Meissner, and E.S. Lander, The mammalian epigenome. Cell, 2007. 128(4): p. 669-81.
    32. Jones, P.A. and G. Liang, Rethinking how DNA methylation patterns are maintained. Nat Rev Genet, 2009. 10(11): p. 805-11.
    33. Kim, M. and J. Costello, DNA methylation: an epigenetic mark of cellular memory. Exp Mol Med, 2017. 49(4): p. e322.
    34. Okano, M., et al., DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell, 1999. 99(3): p. 247-57.
    35. Wienholz, B.L., et al., DNMT3L modulates significant and distinct flanking sequence preference for DNA methylation by DNMT3A and DNMT3B in vivo. PLoS Genet, 2010. 6(9): p. e1001106.
    36. Virani, S., et al., Cancer epigenetics: a brief review. Ilar j, 2012. 53(3-4): p. 359-69.
    37. Bannister, A.J. and T. Kouzarides, Regulation of chromatin by histone modifications. Cell Res, 2011. 21(3): p. 381-95.
    38. Izzo, A. and R. Schneider, Chatting histone modifications in mammals. Brief Funct Genomics, 2010. 9(5-6): p. 429-43.
    39. Hublitz, P., M. Albert, and A.H. Peters, Mechanisms of transcriptional repression by histone lysine methylation. Int J Dev Biol, 2009. 53(2-3): p. 335-54.
    40. Peters, A.H., et al., Histone H3 lysine 9 methylation is an epigenetic imprint of facultative heterochromatin. Nat Genet, 2002. 30(1): p. 77-80.
    41. Cao, R., et al., Role of hPHF1 in H3K27 methylation and Hox gene silencing. Mol Cell Biol, 2008. 28(5): p. 1862-72.
    42. Daujat, S., et al., H3K64 trimethylation marks heterochromatin and is dynamically remodeled during developmental reprogramming. Nat Struct Mol Biol, 2009. 16(7): p. 777-81.
    43. Wang, Y. and S. Jia, Degrees make all the difference: the multifunctionality of histone H4 lysine 20 methylation. Epigenetics, 2009. 4(5): p. 273-6.
    44. Eberharter, A. and P.B. Becker, Histone acetylation: a switch between repressive and permissive chromatin. Second in review series on chromatin dynamics. EMBO Rep, 2002. 3(3): p. 224-9.
    45. Klemm, S.L., Z. Shipony, and W.J. Greenleaf, Chromatin accessibility and the regulatory epigenome. Nature Reviews Genetics, 2019. 20(4): p. 207-220.
    46. Murr, R., Interplay between different epigenetic modifications and mechanisms. Adv Genet, 2010. 70: p. 101-41.
    47. Chen, Z., et al., Epigenetic Regulation: A New Frontier for Biomedical Engineers. Annu Rev Biomed Eng, 2017. 19: p. 195-219.
    48. Iglesias, F.M. and P.D. Cerdán, Maintaining Epigenetic Inheritance During DNA Replication in Plants. Front Plant Sci, 2016. 7: p. 38.
    49. Tan, W., et al., MicroRNAs and cancer: Key paradigms in molecular therapy. Oncol Lett, 2018. 15(3): p. 2735-2742.
    50. Rouhi, A., et al., MiRNAs, epigenetics, and cancer. Mamm Genome, 2008. 19(7-8): p. 517-25.
    51. Griffiths-Jones, S., The microRNA Registry. Nucleic Acids Res, 2004. 32(Database issue): p. D109-11.
    52. Baylin, S.B. and P.A. Jones, A decade of exploring the cancer epigenome — biological and translational implications. Nature Reviews Cancer, 2011. 11: p. 726.
    53. Bohacek, J. and I.M. Mansuy, Epigenetic inheritance of disease and disease risk. Neuropsychopharmacology, 2013. 38(1): p. 220-36.
    54. Kagohara, L.T., et al., Epigenetic regulation of gene expression in cancer: techniques, resources and analysis. Brief Funct Genomics, 2018. 17(1): p. 49-63.
    55. Belinsky, S.A., et al., Aberrant methylation of p16(INK4a) is an early event in lung cancer and a potential biomarker for early diagnosis. Proc Natl Acad Sci U S A, 1998. 95(20): p. 11891-6.
    56. McDermott, K.M., et al., p16(INK4a) prevents centrosome dysfunction and genomic instability in primary cells. PLoS Biol, 2006. 4(3): p. e51.
    57. Reynolds, P.A., et al., Tumor suppressor p16INK4A regulates polycomb-mediated DNA hypermethylation in human mammary epithelial cells. J Biol Chem, 2006. 281(34): p. 24790-802.
    58. Herman, J.G., et al., Inactivation of the CDKN2/p16/MTS1 gene is frequently associated with aberrant DNA methylation in all common human cancers. Cancer Res, 1995. 55(20): p. 4525-30.
    59. Liang, T.J., et al., APC hypermethylation for early diagnosis of colorectal cancer: a meta-analysis and literature review. Oncotarget, 2017. 8(28): p. 46468-46479.
    60. Zhao, S.L., et al., Effects of DNA methyltransferase 1 inhibition on esophageal squamous cell carcinoma. Dis Esophagus, 2011. 24(8): p. 601-10.
    61. Peng, D.F., et al., DNA methylation of multiple tumor-related genes in association with overexpression of DNA methyltransferase 1 (DNMT1) during multistage carcinogenesis of the pancreas. Carcinogenesis, 2006. 27(6): p. 1160-8.
    62. Saito, Y., et al., Increased protein expression of DNA methyltransferase (DNMT) 1 is significantly correlated with the malignant potential and poor prognosis of human hepatocellular carcinomas. Int J Cancer, 2003. 105(4): p. 527-32.
    63. Zhao, Z., et al., Depletion of DNMT3A suppressed cell proliferation and restored PTEN in hepatocellular carcinoma cell. J Biomed Biotechnol, 2010. 2010: p. 737535.
    64. Butcher, D.T. and D.I. Rodenhiser, Epigenetic inactivation of BRCA1 is associated with aberrant expression of CTCF and DNA methyltransferase (DNMT3B) in some sporadic breast tumours. Eur J Cancer, 2007. 43(1): p. 210-9.
    65. Kleer, C.G., et al., EZH2 is a marker of aggressive breast cancer and promotes neoplastic transformation of breast epithelial cells. Proc Natl Acad Sci U S A, 2003. 100(20): p. 11606-11.
    66. Suva, M.L., et al., EZH2 is essential for glioblastoma cancer stem cell maintenance. Cancer Res, 2009. 69(24): p. 9211-8.
    67. van Kemenade, F.J., et al., Coexpression of BMI-1 and EZH2 polycomb-group proteins is associated with cycling cells and degree of malignancy in B-cell non-Hodgkin lymphoma. Blood, 2001. 97(12): p. 3896-901.
    68. Fraga, M.F., et al., Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nat Genet, 2005. 37(4): p. 391-400.
    69. Krusche, C.A., et al., Histone deacetylase-1 and -3 protein expression in human breast cancer: a tissue microarray analysis. Breast Cancer Res Treat, 2005. 90(1): p. 15-23.
    70. Weichert, W., et al., Histone deacetylases 1, 2 and 3 are highly expressed in prostate cancer and HDAC2 expression is associated with shorter PSA relapse time after radical prostatectomy. Br J Cancer, 2008. 98(3): p. 604-10.
    71. Mascolo, M., et al., Epigenetic disregulation in oral cancer. Int J Mol Sci, 2012. 13(2): p. 2331-53.
    72. Radhakrishnan, R., S. Kabekkodu, and K. Satyamoorthy, DNA hypermethylation as an epigenetic mark for oral cancer diagnosis. J Oral Pathol Med, 2011. 40(9): p. 665-76.
    73. Shaw, R.J., et al., Quantitative methylation analysis of resection margins and lymph nodes in oral squamous cell carcinoma. Br J Oral Maxillofac Surg, 2007. 45(8): p. 617-22.
    74. Supic, G., et al., Interaction between the MTHFR C677T polymorphism and alcohol--impact on oral cancer risk and multiple DNA methylation of tumor-related genes. J Dent Res, 2011. 90(1): p. 65-70.
    75. Supic, G., et al., Gene hypermethylation in tumor tissue of advanced oral squamous cell carcinoma patients. Oral Oncol, 2009. 45(12): p. 1051-7.
    76. Saleem, M., et al., Review-Epigenetic therapy for cancer. Pak J Pharm Sci, 2015. 28(3): p. 1023-32.
    77. Gros, C., et al., DNA methylation inhibitors in cancer: recent and future approaches. Biochimie, 2012. 94(11): p. 2280-96.
    78. Ritchie, E.K., Safety and efficacy of azacitidine in the treatment of elderly patients with myelodysplastic syndrome. Clin Interv Aging, 2012. 7: p. 165-73.
    79. Pleyer, L., et al., Azacitidine in 302 patients with WHO-defined acute myeloid leukemia: results from the Austrian Azacitidine Registry of the AGMT-Study Group. Ann Hematol, 2014. 93(11): p. 1825-38.
    80. Malik, P. and A.F. Cashen, Decitabine in the treatment of acute myeloid leukemia in elderly patients. Cancer Manag Res, 2014. 6: p. 53-61.
    81. Gnyszka, A., Z. Jastrzebski, and S. Flis, DNA methyltransferase inhibitors and their emerging role in epigenetic therapy of cancer. Anticancer Res, 2013. 33(8): p. 2989-96.
    82. West, A.C. and R.W. Johnstone, New and emerging HDAC inhibitors for cancer treatment. J Clin Invest, 2014. 124(1): p. 30-9.
    83. Piekarz, R.L., et al., Phase II multi-institutional trial of the histone deacetylase inhibitor romidepsin as monotherapy for patients with cutaneous T-cell lymphoma. J Clin Oncol, 2009. 27(32): p. 5410-7.
    84. Alzrigat, M., A.A. Parraga, and H. Jernberg-Wiklund, Epigenetics in multiple myeloma: From mechanisms to therapy. Semin Cancer Biol, 2018. 51: p. 101-115.
    85. Sharma, A., et al., DNA methylation alterations in multiple myeloma as a model for epigenetic changes in cancer. Wiley Interdiscip Rev Syst Biol Med, 2010. 2(6): p. 654-69.
    86. Sharma, S., T.K. Kelly, and P.A. Jones, Epigenetics in cancer. Carcinogenesis, 2010. 31(1): p. 27-36.
    87. Li, J., et al., Epigenetic targeting drugs potentiate chemotherapeutic effects in solid tumor therapy. Sci Rep, 2017. 7(1): p. 4035.
    88. Ronnekleiv-Kelly, S.M., A. Sharma, and N. Ahuja, Epigenetic therapy and chemosensitization in solid malignancy. Cancer Treat Rev, 2017. 55: p. 200-208.
    89. Grant, S., C. Easley, and P. Kirkpatrick, Vorinostat. Nature Reviews Drug Discovery, 2007. 6: p. 21.
    90. Marks, P.A. and M. Dokmanovic, Histone deacetylase inhibitors: discovery and development as anticancer agents. Expert Opin Investig Drugs, 2005. 14(12): p. 1497-511.
    91. Yoo, C.B. and P.A. Jones, Epigenetic therapy of cancer: past, present and future. Nature Reviews Drug Discovery, 2006. 5(1): p. 37-50.
    92. Hadden, M.J. and A. Advani, Histone Deacetylase Inhibitors and Diabetic Kidney Disease. Int J Mol Sci, 2018. 19(9).
    93. Sandor, V., et al., P21-dependent g(1)arrest with downregulation of cyclin D1 and upregulation of cyclin E by the histone deacetylase inhibitor FR901228. Br J Cancer, 2000. 83(6): p. 817-25.
    94. Bubna, A.K., Vorinostat-An Overview. Indian J Dermatol, 2015. 60(4): p. 419.
    95. Blackledge, M.S. and C. Melander, Programmable DNA-binding small molecules. Bioorg Med Chem, 2013. 21(20): p. 6101-14.
    96. Paul, A., et al., A New Generation of Minor-Groove-Binding-Heterocyclic Diamidines That Recognize G·C Base Pairs in an AT Sequence Context. Molecules, 2019. 24(5).
    97. Chenoweth, D.M. and P.B. Dervan, Structural basis for cyclic Py-Im polyamide allosteric inhibition of nuclear receptor binding. J Am Chem Soc, 2010. 132(41): p. 14521-9.
    98. O'Hare, C.C., et al., Sequence recognition in the minor groove of DNA by covalently linked formamido imidazole-pyrrole-imidazole polyamides: effect of H-pin linkage and linker length on selectivity and affinity. Biochemistry, 2007. 46(42): p. 11661-70.
    99. Best, T.P., et al., Nuclear localization of pyrrole-imidazole polyamide-fluorescein conjugates in cell culture. Proc Natl Acad Sci U S A, 2003. 100(21): p. 12063-8.
    100. Nickols, N.G. and P.B. Dervan, Suppression of androgen receptor-mediated gene expression by a sequence-specific DNA-binding polyamide. Proc Natl Acad Sci U S A, 2007. 104(25): p. 10418-23.
    101. Muzikar, K.A., N.G. Nickols, and P.B. Dervan, Repression of DNA-binding dependent glucocorticoid receptor-mediated gene expression. Proc Natl Acad Sci U S A, 2009. 106(39): p. 16598-603.
    102. Kawamoto, Y., T. Bando, and H. Sugiyama, Sequence-specific DNA binding Pyrrole-imidazole polyamides and their applications. Bioorg Med Chem, 2018. 26(8): p. 1393-1411.
    103. Melander, C., R. Burnett, and J.M. Gottesfeld, Regulation of gene expression with pyrrole-imidazole polyamides. J Biotechnol, 2004. 112(1-2): p. 195-220.
    104. Huang, T.T., et al., Epigenetic deregulation of the anaplastic lymphoma kinase gene modulates mesenchymal characteristics of oral squamous cell carcinomas. Carcinogenesis, 2013. 34(8): p. 1717-27.
    105. Day, T.A., et al., Oral cancer treatment. Curr Treat Options Oncol, 2003. 4(1): p. 27-41.
    106. Fan, S., et al., A review of clinical and histological parameters associated with contralateral neck metastases in oral squamous cell carcinoma. Int J Oral Sci, 2011. 3(4): p. 180-91.
    107. More, Y. and A.K. D'Cruz, Oral cancer: review of current management strategies. Natl Med J India, 2013. 26(3): p. 152-8.
    108. Greenberg, J.S., et al., Disparity in pathologic and clinical lymph node staging in oral tongue carcinoma. Implication for therapeutic decision making. Cancer, 2003. 98(3): p. 508-15.
    109. da Silva, S.D., et al., Recurrent oral cancer: current and emerging therapeutic approaches. Front Pharmacol, 2012. 3: p. 149.
    110. Muntean, A.G. and J.L. Hess, Epigenetic dysregulation in cancer. Am J Pathol, 2009. 175(4): p. 1353-61.
    111. Lv, S., et al., Histone methyltransferase KMT2D sustains prostate carcinogenesis and metastasis via epigenetically activating LIFR and KLF4. Oncogene, 2018. 37(10): p. 1354-1368.
    112. Cui, H., et al., DNA methyltransferase 3A isoform b contributes to repressing E-cadherin through cooperation of DNA methylation and H3K27/H3K9 methylation in EMT-related metastasis of gastric cancer. Oncogene, 2018. 37(32): p. 4358-4371.
    113. Liu, D., et al., C/EBPbeta enhances platinum resistance of ovarian cancer cells by reprogramming H3K79 methylation. Nat Commun, 2018. 9(1): p. 1739.
    114. Don, K.R., et al., Promoter hypermethylation patterns of P16, DAPK and MGMT in oral squamous cell carcinoma: a systematic review and meta-analysis. Indian J Dent Res, 2014. 25(6): p. 797-805.
    115. Sun, W., et al., Comparison of promoter hypermethylation pattern in salivary rinses collected with and without an exfoliating brush from patients with HNSCC. PLoS One, 2012. 7(3): p. e33642.
    116. Lim, Y., et al., Salivary epigenetic biomarkers in head and neck squamous cell carcinomas. Biomark Med, 2016. 10(3): p. 301-13.
    117. Wouters, B.J. and R. Delwel, Epigenetics and approaches to targeted epigenetic therapy in acute myeloid leukemia. Blood, 2016. 127(1): p. 42-52.
    118. Kaminskas, E., et al., FDA drug approval summary: azacitidine (5-azacytidine, Vidaza) for injectable suspension. Oncologist, 2005. 10(3): p. 176-82.
    119. Kantarjian, H., et al., Decitabine improves patient outcomes in myelodysplastic syndromes: results of a phase III randomized study. Cancer, 2006. 106(8): p. 1794-803.
    120. Mann, B.S., et al., FDA approval summary: vorinostat for treatment of advanced primary cutaneous T-cell lymphoma. Oncologist, 2007. 12(10): p. 1247-52.
    121. Ramalingam, S.S., et al., Carboplatin and Paclitaxel in combination with either vorinostat or placebo for first-line therapy of advanced non-small-cell lung cancer. J Clin Oncol, 2010. 28(1): p. 56-62.
    122. Connolly, R.M., et al., Combination Epigenetic Therapy in Advanced Breast Cancer with 5-Azacitidine and Entinostat: A Phase II National Cancer Institute/Stand Up to Cancer Study. Clin Cancer Res, 2017. 23(11): p. 2691-2701.
    123. Matei, D., et al., Epigenetic resensitization to platinum in ovarian cancer. Cancer Res, 2012. 72(9): p. 2197-205.
    124. Padroni, G., et al., Sequence-Selective Minor Groove Recognition of a DNA Duplex Containing Synthetic Genetic Components. J Am Chem Soc, 2019. 141(24): p. 9555-9563.
    125. Barlesi, F., et al., Global histone modifications predict prognosis of resected non small-cell lung cancer. J Clin Oncol, 2007. 25(28): p. 4358-64.
    126. Song, J.S., et al., Global histone modification pattern associated with recurrence and disease-free survival in non-small cell lung cancer patients. Pathol Int, 2012. 62(3): p. 182-90.
    127. Park, Y.S., et al., The global histone modification pattern correlates with cancer recurrence and overall survival in gastric adenocarcinoma. Ann Surg Oncol, 2008. 15(7): p. 1968-76.
    128. Chen, Y.W., et al., Histone modification patterns correlate with patient outcome in oral squamous cell carcinoma. Cancer, 2013. 119(24): p. 4259-67.
    129. Grigo, K., et al., HNF4 alpha orchestrates a set of 14 genes to down-regulate cell proliferation in kidney cells. Biol Chem, 2008. 389(2): p. 179-87.
    130. Taniguchi, H., et al., Loss-of-function mutations in Zn-finger DNA-binding domain of HNF4A cause aberrant transcriptional regulation in liver cancer. Oncotarget, 2018. 9(40): p. 26144-26156.
    131. Zhao, J.F., et al., The ASH1-miR-375-YWHAZ Signaling Axis Regulates Tumor Properties in Hepatocellular Carcinoma. Mol Ther Nucleic Acids, 2018. 11: p. 538-553.
    132. Ganesan, K., et al., Inhibition of gastric cancer invasion and metastasis by PLA2G2A, a novel beta-catenin/TCF target gene. Cancer Res, 2008. 68(11): p. 4277-86.
    133. Xing, X.F., et al., Phospholipase A2 group IIA expression correlates with prolonged survival in gastric cancer. Histopathology, 2011. 59(2): p. 198-206.
    134. Yuan, S., et al., GPC5, a novel epigenetically silenced tumor suppressor, inhibits tumor growth by suppressing Wnt/beta-catenin signaling in lung adenocarcinoma. Oncogene, 2016. 35(47): p. 6120-6131.
    135. War, S.A., B. Kim, and U. Kumar, Human somatostatin receptor-3 distinctively induces apoptosis in MCF-7 and cell cycle arrest in MDA-MB-231 breast cancer cells. Mol Cell Endocrinol, 2015. 413: p. 129-44.

    下載圖示 校內:2024-08-01公開
    校外:2024-08-01公開
    QR CODE