| 研究生: |
薛丁仁 Hsueh, Ting-Jen |
|---|---|
| 論文名稱: |
氧化鋅奈米線成長與感測器元件之應用 Growth of ZnO Nanowires and their Application to Sensor Devices |
| 指導教授: |
張守進
Chang, Shoou-Jinn |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 英文 |
| 論文頁數: | 113 |
| 中文關鍵詞: | 氣相傳輸沉積法 、氣體感測器 、氧化鋅 、奈米線 |
| 外文關鍵詞: | vapor phase transport deposition (VPTD), ZnO, nanowires, gas sensor |
| 相關次數: | 點閱:140 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文中,我們以氣相傳輸沉積法(vapor phase transport deposition , VPTD)控制氧化鋅奈米線之成長方向,並且成功的研製太陽能電池、紫外線檢測器、真空壓力感測器、一氧化碳感測器和酒精感測器之奈米結構元件。首先,垂直成長方面,類階梯狀的氧化鋅奈米線被製作在ZnO:Ga/glass基板,電子穿透顯微鏡(TEM)結果指出,契合的特性是可以在 凌柱面形成,而(0002)面是以磊晶方式成長。分析結果也發現 面較(0002)面穩定。製作異貭結構太陽能電池方面,p型-氧化銅(Cu2O)濺鍍在垂直n型-氧化鋅奈米線上且形成異貭接面二極體。實驗結果發現,二極體的啟始電壓為0.46V,而太陽能的短路電流、開路電壓、充滿因數(fill factor, FF)和功率轉換效率分別為2.35 mA/cm2, 0.13 V, 0.29 和大約0.1%。
選區與側向成長技術是被用於製作紫外光檢測器、真空壓力感測器與酒精氣體感測器。在不同的成長條件下,藉由氣相傳輸沉積法分別將垂直和側向的氧化鋅奈米線製作在圖案化(pattern)的ZnO:Ga/glass基板上。垂直的氧化鋅奈米線其長度與直徑為 1 µm與50-100 nm。側向的氧化鋅奈米線其長度與直徑分別為 5 µm與30 nm並製作紫外線檢測器、真空壓力感測器與酒精感測器。紫外線檢測器元件方面,當波長362 nm的光射入的時候,側向成長的氧化鋅奈米線光檢測器在10 和15 V偏壓,其響應度分別為0.015 和0.03 A/W。真空壓力感測器方面,在低壓環境下量測,發現1*10-3 torr、 1*10-4 torr、 3*10-5 torr 和 5*10-6 torr下所對應之電流分別為17、 34.28、 57.37 與96.06 nA。酒精感測器方面,當測量溫度為180°C、230°C、260°C和300°C時,元件的響應分別為20%、35%、58% a和61%。之後固定量測溫度在300°C,改變酒精濃度為50、100、500、1000和1500 ppm時,響應分別為18%、26%、43%、55%和61%。
垂直與無方向的成長技術,製作一氧化碳氣體感測器(CO)增強酒精氣體感測器及增強一氧化碳氣體感測器。在一氧化碳氣體感測器方面,實驗條件為改變鋅蒸氣源之鋅粉量,其變化量分別為0.1 g、0.15 g、0.2 g、0.25 g、0.3 g共五組,所選用的成長溫度變化分別為600℃、650℃、700℃、750℃、800℃。實驗結果指出,當鋅蒸氣源之鋅粉量為0.1 g、0.15 g、0.2 g、0.25 g和0.3 g時,CO氣體的響應分別為5%、8%、35%、57%和29%。之後固定鋅蒸氣源之鋅粉量為0.25 g,其變化成長溫度為600℃、650℃、700℃、750℃和800℃時,CO氣體的響應分別為3%、7%、57%、7.5%和5%。實驗結果顯示氧化鋅奈米線的成長條件變化,對於其缺陷有其相關性,進而影響其氣體的感測行為。增強酒精氣體感測器方面,則是使用光化學還原技術將鈀(Pd)吸附於氧化鋅奈米線之表面,其增加表面積感應。實驗結果證明,增加鈀吸附的元件,對酒精氣體的感測響應是比無鈀吸附的奈米線好。此外,光化學還原技術也被使用在金(Au) 吸附於氧化鋅奈米線之表面,並且製作增強一氧化碳氣體感測器。在50 ppm的一氧化碳環境並且將元件加熱到350 oC。實驗結果指出,藉由金奈米粒子的吸附,敏感度是從4.2%增強至46.5%。
This study introduces a simple approach for forming ladder-like nanowires arrays. The number of apparent steps of the ZnO nanowires could be increased by the number of vapor phase transport deposition processes. The growth of two diverse forms on different planes leads to the ladder-like appearance of the nanowires: coherent characteristic on ZnO prismatic planes and epitaxial growth on ZnO (0002) planes. The planes are much more stable than (0002) planes which the planes permit boundaries procreation. We also report the deposition of p-Cu2O onto vertical n-ZnO nanowires prepared on ZnO:Ga/glass templates. With the sputtered Cu2O, the nanowires became club-like (nanowire with a head). Experimental results indicate that sputtered Cu2O also formed nano-shells surrounding the ZnO cores. The p-Cu2O/n-ZnO nanowire heterostructure exhibits rectifying behavior with a sharp turn on at ~0.46 V. Furthermore, the short-circuit photocurrent density, open circuit voltage, fill factor and conversion efficiency of the fabricated solar cell were 2.35 mA/cm2, 0.13 V, 0.29 and around 0.1%, respectively.
Vertical well-aligned and latterl ZnO nanowires were prepared on patterned ZnO:Ga/glass substrates by reactive evaporation method under different growth conditions. The average length and diameter of vertical well-aligned ZnO nanowires were around 1 µm and 50-100 nm, respectively. In contrast, the average length and diameter of latterl ZnO nanowires were around 5 µm and 30 nm, respectively. With light of wavelength 362 nm was incident, the measured responsivities were 0.015 and 0.03 A/W when the latteral ZnO nanowire photodetector was biased at 10 and 15 V, respectively. Vacuum pressure sensor was then fabricated using one single nanowire bridged across two electrodes. By measuring the I-V characteristics of the samples at low pressure, we found that the currents were of 17, 34.28, 57.37 and 96.06 nA for the ZnO nanowire measured at 1*10-3 torr, 1*10-4 torr, 3*10-5 torr and 5*10-6 torr, respectively. We also study the growth of ZnO nanowires on ZnO:Ga/glass templates and the fabrication of laterally grown ZnO nanowire ethanol sensors. It was found that resistivity of the fabricated sensor decreased upon ethanol gas injection. By introducing 1500 ppm ethanol gas, it was found that the device response were around 20%, 35%, 58% and 61% when the gas sensor was operated at 180°C, 230°C, 260°C and 300°C, respectively. It was also found that the device response at 300°C were around 18%, 26%, 43%, 55% and 61% when the concentration of injected ethanol gas was 50, 100, 500, 1000 and 1500 ppm, respectively.
In vertical and random growth, this investigation discusses the growth of high-density single crystalline ZnO nanowires on patterned ZnO:Ga/SiO2/Si templates and the fabrication of ZnO nanowire-based CO gas sensors. The ZnO nanowires grown on a sputtered ZnO:Ga layer were vertically aligned while those grown directly on a SiO2 layer were randomly oriented. It was also found that average length of the nanowires increased while average diameter of the nanowires decreased as the amount of zinc metal powder in the quartz tube was increased from 0.1 to 0.25 g. As we further increased the amount of zinc metal power to 0.3 g, it was found that the nanowires became significantly shorter. By measuring the resistivity change of the samples at 320oC, it was found that detector sensitivities were 5%, 8%, 35%, 57% and 29% for the ZnO nanowire CO sensors prepared with 0.1, 0.15, 0.2, 0.25, and 0.3 g zinc metal powder, respectively. Furthermore, ZnO nanowire-based CO gas sensors were fabricated by growing single crystal ZnO nanowires on patterned ZnO:Ga/SiO2/Si templates at various temperatures. It was found that average length of the nanowires increased while the average diameter of the nanowires decreased as we increased the growth temperature from 600°C to 700°C. It was also found that the nanowires became significantly shorter as the growth temperature was increased. By measuring the resistivity change of the samples at 320oC, it was found that the sensor responses were of 3%, 17%, 57%, 7.5% and 5% for the ZnO nanowires grown at 600oC, 650oC, 700oC, 750oC and 800oC, respectively. Furthermore, it was found that the sensitivity of sensor was relatively increased when the concentration of injected CO gas increased. Further, Pd adsorption on nanowire surfaces and the fabrication of ZnO nanowire-based ethanol gas sensors. With Pd adsorption, it was found that measured sensitivities of the ethanol gas sensors increased from 18.5% to 44.5% at 170oC and increased from 36.0% to 61.5% at 230oC. We also adsorbed Au nano-particles onto nanowire surfaces and fabricated ZnO nanowire CO sensors. With 50 ppm CO gas, it was found that we could enhance the device sensitivities at 350oC from 4.2% to 46.5% by the adsorption of Au nano-particles.
Reference
[1] H. J. Ko, S. K. Hong, Y. Chen, T. Yao, “A challenge in molecular beam epitaxy of ZnO: control of material properties by interface engineering”, Thin Solid Films, vol. 409, pp. 153-160 (2002).
[2] C. S. Wei, Y. Y. Lin, Y. C. Hu, C. W. Wu, C. K. Shih, C. T. Huang, S. H. Chang, “Partial-electroded ZnO pyroelectric sensors for responsivity improvement”, Sens. Actuators A, vol. 128, pp.18-24 (2006).
[3] H. H. Hsieh, C. C. Wu, “Scaling behavior of ZnO transparent thin-film transistors”, Appl. Phys. Lett., vol. 89, pp. 041109-041111 (2006).
[4] H. Kind, H. Yang, B. Messer, M. Law, P. Yang, “Nanowire ultraviolet photodetectors and optical switches”, Adv. Mater., vol. 14, pp. 158-160 (2002).
[5] H. J. Fan, W. Lee, R. Hauschild, M. Alexe, G.L. Rhun, R. Scholz, A. Dadgar, K. Nielsch, H. Kalt, A. Krost, M. Zacharias, U. Gosels, “Template-assisted large-scale ordered arrays of ZnO pillars for optical and piezoelectric applications”, Small, vol. 2, pp. 561-568 (2006).
[6] J. Zhu, Y. Chen, G. Saraf, N. W. Emanetoglu, Y. Lua, “Voltage tunable surface acoustic wave phase shifter using semiconducting/piezoelectric ZnO dual layers grown on γ-Al2O3”, Appl. Phys. Lett., vol. 89, pp. 103513-103515 (2006).
[7] S. K. Hazra, S. Basu, “Hydrogen sensitivity of ZnO p-n homojunctions”, Sens. Actuators B, vol. 117, pp. 177-182 (2006).
[8] M. S. Wagh, G. H. Jain, D. R. Patil, S. A. Patil, L. A. Patil, “Modified zinc oxide thick film resistors as NH3 gas sensor”, Sens. Actuators B, vol. 115, pp. 128-133 (2006).
[9] J. Wollenstein, J. A. Plaza, C. Cane, Y. Min, H. Bottner, H.L. Tuller, “A novel single chip thin film metal oxide array”, Sens. Actuators B, vol. 93, pp. 350-355, (2003).
[10] S. Mridha, D. Basak, “Investigation of a p-CuO/n-ZnO thin film heterojunction for H2 gas-sensor applications”, Semicond. Sci. Technol., vol. 21, pp. 928-932 (2006).
[11] G. G. Huang, C. T. Wang, H. T. Tang, Y. S. Huang, J. Yang, “ZnO nanoparticle-modified infrared internal reflection elements for selective detection of volatile organic compounds”, Anal. Chem., vol. 78, pp. 2397-2404 (2006).
[12] Z. P. Sun, L. Liu, L. Zhang, D. Z. Jia, “Rapid synthesis of ZnO nano-rods by one-step, room-temperature, solid-state reaction and their gas-sensing properties”, Nanotechnol., vol. 17, pp. 2266-2270 (2006).
[13] J. J. Wu, S. C. Liu, “Catalyst-free growth and characterization of ZnO nanorods”, J. Phys. Chem. B, vol. 106, pp. 9546-9550 (2002).
[14] Y. Li, G. W. Meng, L. D. Zhang, F. Phillipp, “Ordered semiconductor ZnO nanowire arrays and their photoluminescence properties”, Appl. Phys. Lett., vol. 76, pp. 2011-2013 (2000).
[15] L. Vayssieres, “Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions”, Adv. Mater. (Weinheim, Ger.), vol. 15, pp. 464 (2003).
[16] Y. W. Heo, V. Varadarajan, M. Kaufman, K. Kim, D. P. Norton, F. Ren, P. H. Fleming, “Site-specific growth of Zno nanorods using catalysis-driven molecular-beam epitaxy”, Appl. Phys. Lett., vol. 81, pp. 3046-3049 (2002).
[17] W. I. Park, Y. H. Jun, S. W. Jung, G. C. Yi, “Excitonic emissions observed in ZnO single crystal nanorods”, Appl. Phys. Lett., vol. 82, pp. 964-966 (2003).
[18] M. H. Huang, Y. Y. Wu, H. Feick, N. Tran, E. Weber, P. D. Yang, “Catalytic growth of zinc oxide nanowires by vapor transport”, Adv. Mater., (Weinheim, Ger.) vol. 13, pp.113-115 (2001).
[19] J. Grabowska, K. K. Nanda, E. McGlynn, J. P. Mosnier, M. O. Henry, “Studying the growth conditions, the alignment and structure of ZnO nanorods”, Surface & Coatings Technology, vol. 200, pp.1093-1099 (2005).
[20] C. L. Hsu, S. J. Chang, H. C. Hung, Y. R. Lin, C. J. Huang, Y. K. Tseng and I. C. Chen, “Vertical single-crystal ZnO nanowires grown on ZnO:Ga/glass templates”, IEEE Tran. Nanotechnol., vol. 4, pp. 649-654 (2005).
[21] C. L. Hsu, S. J. Chang, H. C. Hung, Y. R. Lin, T. H. Lu, Y. K. Tseng and I. C. Chen, “Selective growth of vertical ZnO nanowires on ZnO:Ga/Si3N4/SiO2/Si templates”, J. Vac. Sci. Technol. B, vol. 23, pp. 2292-2296 (2005).
[22] T. J. Hsueh, C. L. Hsu, S. J. Chang, Y. R. Lin, T. S. Lin and I. C. Chene, “Growth and Characterization of Sparsely Dispersed ZnO Nanowires”, J. Electrochem. Soc., vol. 154(3), pp. H153-H156 (2007).
[23] K. Akimoto, S. Ishizuka, M. Yanagita, Y. Nawa, G. K. Paul and T. Sakurai, “Thin film deposition of Cu2O and application for solar cells”, Solar Energy, vol. 80, pp. 715-722 (2006).
[24] J. J. Wu and S. C. Liu, “Low-temperature growth of well-aligned ZnO nanorods by chemical vapor deposition”, Adv. Mater., vol. 14, pp. 215+ (2002).
[25] S. Muthukumar, H. Sheng, J. Zhong, Z. Zhang, N. W. Emanaetoglu, Y. Lu, “Selective MOCVD growth of ZnO nanotips”, IEEE Trans. Nanotechnol., vol. 2, pp. 50-54 (2003).
[26] M. H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, P. Yang, “Catalytic growth of zinc oxide nanowires by vapor transport”, Adv. Mater., (Weinheim, Ger.) vol. 13, pp.113-116 (2000).
[27] C. Geng, Y. Jiang, Y. Yao, X. Meng, J. A. Zapien, C. S. Lee, Y. Lifshitz, S. T. Lee, “Well-aligned ZnO nanowire arrays fabricated on silicon substrates”, Adv. Funct. Mater., vol.14, pp. 589-594 (2004).
[28] W. Lee, M. C. Jeong, J. M. Myoung, “Evolution of the morphology and optical properties of ZnO nanowires during catalyst-free growth by thermal evaporation”, Nanotechnology, vol. 15, pp. 1441-1445 (2004).
[29] T. J. Hsueh, S. J. Chang, Y. R. Lin, S. Y. Tsai, I. C. Chen, C. L. Hsu, “A novel method for the formation of ladder-like ZnO nanowires”, Cryst. Growth Des., vol. 6, pp.1282-1284 (2006).
[30] Y. K. Tseng, H. C. Hsu, W. F. Hsieh, K. S. Liu, I. C. Chen, “Two-step oxygen injection process for growing ZnO nanorods”, Journal of Materials Research, vol. 18, pp. 2837-2844 (2003).
[31] Y. Wu, P. Yang, “Direct Observation of Vapor-Liquid-Solid Nanowire Growth”, J. Am. Chem. Soc., vol. 123, pp.3165-3166 (2001).
[32] W. S. Shi, Y. F. Zheng, N. Wang, C. S. Lee, S. T. Lee,“Microstructures of gallium nitride nanowires synthesized by oxide-assisted method”, Chem. Phys. Lett., vol. 345, pp. 377-380, (2001).
[33] W. S. Shi, Y. F. Zheng, N. Wang, C. S. Lee, S. T. Lee, “Oxide-assisted growth and optical characterization of gallium-arsenide nanowires”, Appl. Phys. Lett., vol. 78, pp. 3304-3306 (2001).
[34] S. T. Lee, N. Wang, and C. S. Lee, “Semiconductor nanowires: syntheisi, sturcture and properties”, Mate. Scie. and Engi., vol. A286, pp. 16-23 (2000).
[35] C. N. R. Rao, F. L. Deepak, G. Gundiah, A. Govindaraj, “Inorganic nanowires”, Progress in Sol. Stat. Chem., vol. 31, pp 5-147 (2003).
[36] N. Wang, Y. H. Tang, Y. F. Zheng, C. S. Lee, I. Bello, S. T. Lee, “Si nanowires grown from silicon oxide”, Chem. Phys. Lett., vol. 299, pp. 237-242, (1999).
[37] G. W. Sears, “A growth mechanism for mercury whiskers”, Acta Metallurgica, vol. 3, pp. 361-366 (1955).
[38] G. W. Sears, “A mechanism of whisker growth”, Acta Metallurgica, vol. 3, pp. 367-369 (1955).
[39] G. W. Sears, “Mercury whiskers”, Acta Metallurgica, vol. 1, pp. 457-459 (1953).
[40] J. F. Conley Jr, L. Stecker and Y. Ono, “Directed assembly of ZnO nanowires on a Si substrate without a metal catalyst using a patterned ZnO seed layer”, Nanotechnology, vol. 16, pp. 292–296 (2005).
[41] Zhang Y., Jia H. B., Luo X. H., Chen X. H., Yu D. P., Wang R. M., “Synthesis, Microstructure, and Growth Mechanism of Dendrite ZnO Nanowires”, J. Phys. Chem. B, vol. 107, pp. 8289-8293 (2003).
[42] W. P. Zheng, Z. R. Dai, Z. L. Wang, “Nanobelts of Semiconducting Oxides”, Science, vol. 291, pp. 1947-1949 (2001).
[43] H. J. Egelhaaf and D. Oelkrug, “Luminescence and nonradiative deactivation of excited states involving oxygen defect centers in polycrystalline ZnO”, J. Crystal Growth, vol. 161, pp. 190-194, (1996).
[44] W.I. Park, Y. H. Jun, S. W. Jung, G. C. Yi, “Metalorganic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods”, Appl. Phys. Lett. vol. 80, pp. 4232-4234 (2002).
[45] D. A. Neamen, “Semiconductor physics and devices basic principles”, Mc Graw-Hill, pp. 623-631 (2003).
[46] P. Mitra, A. P. Chatterjee and H. S. Maiti, “ZnO thin film sensor”, Mater. Lett., vol. 35, pp. 33-38. (1998).
[47] Q. Wan, Q. H. Li, Y. J. Chen, T. H. Wang, X. L. He, J. P. Li and C. L. Lin, “Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors”, Appl. Phys. Lett. vol. 84, pp. 3654-3656 (2004).
[48] M. Batzill and U. Diebold, “Surface studies of gas sensing metal oxides”, phys. Chem. Chem. Phys. vol. 9, pp. 2307-2318 (2007).
[49] J. Cerd`a Belmonte, J. Manzano, J. Arbiol, A. Cirera, J. Puigcorb´e, A. Vil`a, N. Sabat´e, I. Gr`acia, C. Can´e, J. R. Morante, “Micromachined twin gas sensor for CO and O2 quantification based on catalytically modified nano-SnO2”, Sens. Actuators B, vol. 114, pp. 881-892 (2006).
[50] P. P. Sahay, “Zinc oxide thin film gas sensor for detection of acetone”, J. Mater. Sci., vol. 40, pp. 4383-4385 (2005).
[51] Y. Wang, J. Chen and X. Wu, “Preparption and gas-sensing properites of perovskite-type SrFeO3 oxide”, Mater. Lett., vol. 49, pp. 361-364 (2001).
[52] A. Kolmakov, Y. Zhang, G. Chen, M. Moskovits, “Detection of CO and O2 using tin oxide nanowire sensor”, Adv. Mater., vol. 12, pp. 997-1000 (2003).
[53] http://www.jeol.com/sem/semprods/jsm6500f.html
[54] http://www.nano.nsysu.edu.tw/nano/equipment/HRXRD.html
[55] http://www.feicompany.com/systems/index.aspx
[56] M. H. Huang, Mao, S.; Feick, H.; Yan, H.; Wu, Y.; Kind, H.; Weber, E.; Russo, R; Yang, P., “Room-temperature ultraviolet nanowire nanolasers”, Science, vol. 292, pp. 1897-1899 (2001).
[57] C. L. Hsu, Y. R. Lin, S. J. Chang, T. S. Lin, S. Y. Tsai and I. C. Chen, “Vertical ZnO/ZnGa2O4 core-shell nanorods grown on ZnO/glass templates by reactive evaporation”, Chem. Phys. Lett. vol. 411, pp. 221-224 (2005).
[58] Y. Masuda, N. Kinoshita, F. Sato, K. Koumoto, “Site-selective deposition and morphology control of UV- and visible-light-emitting ZnO crystals”, Cryst. Growth Des., vo1. 6, pp. 75-78 (2006).
[59] M. C. Jeong, B. Y. Oh, O. H. Nam, T. Kim, J. M. Myoung, “Three-dimensional ZnO hybrid nanostructures for oxygen sensing application”, Nanotechnol., vol. 17, pp. 526-530 (2006).
[60] M. J. Zheng, L. D. Zhang, G. H. Li, W. Z. Shen, “Fabrication and optical properties of large-scale uniform zinc oxide nanowire arrays by one-step electrochemical deposition technique”, Chem. Phys. Lett., vol. 363, pp. 123-128 (2002).
[61] X. Wang, J. Song, P. Li, J. H. Ryou, R. D. Dupuis, C. J. Summers, Z. L. Wang, “Growth of uniformly aligned ZnO nanowire heterojunction arrays on GaN, AIN, and Al0.5Ga0.5N substrates”, J. Am. Chem. Soc., vol. 127, pp. 7920-7923 (2005).
[62] J. Song, X. Wang, E. Riedo, Z. L. Wang, “Systematic study on experimental conditions for large-scale growth of aligned ZnO nanwires on nitrides”, J. Phys. Chem. B, vol. 109, pp. 9869-9872 (2005).
[63] L. E. Greene, M. Law, J. Goldberger, F. Kim, J. C. Johnson, Y. Zhang, R. J. Saykally, P. Yang, “Low-temperature wafer-scale production of ZnO nanowire arrays”, Angew. Chem. Int. Ed., vol. 42, pp. 3031-3034 (2003).
[64] S. F. Yu, C. Yuen, S. P. Lau, W. I. Park, G. C. Yi, “Ultraviolet amplified spontaneous emission from zinc oxide ridge waveguides on silicon substrate”, Appl. Phys. Lett., vol. 84, pp. 3241-3243 (2003).
[65] W. I. Park, G. C. Yi, “Electroluminescence in n-ZnO nanorod arrays vertically grown on p-GaN”, Adv. Mater., vol. 16, pp. 87+ (2004).
[66] Y. R. Lin, Y. K. Tseng, S. S. Yang, S. T. Wu, C. L. Hsu and S. J. Chang, “Buffer-facilitated epitaxial growth of ZnO nanowire” Cryst. Growth Des. vol. 5, pp. 579-583 (2005.).
[67] Y. Tak, K. Yong, C. Park, “ZrO2-coated SiC nanowires prepared by plasma-enhanced atomic layer chemical vapor deposition”, J. Electrochem. Soc., vol. 152, pp. G794-G797 (2005).
[68] C. L. Hsu, S. J. Chang, H. C. Hung, Y. R. Lin, C. J. Huang, Y. K. Tseng and I. C. Chen, “Indium-diffused ZnO nanowires synthesized on ITO-buffered Si substrate”, Nanotechnol., 17, 516 (2006).
[69] J. G. Wen, J. Y. Lao, D.Z. Wang, T. M. Kyaw, Y. L. Foo, Z. F. Ren, “Self-assembly of semiconducting oxide nanowires, nanorods, and nanoribbons”, Chem. Phys. Lett., vol. 372, pp. 717-722 (2003).
[70] L. Vayssieres, K. Keis, A. Hagfeldt, S. E. Lindquist, “Three-dimensional array of highly oriented crystalline ZnO microtubes”, Chem. Mater., vol. 13, 4395+ (2001).
[71] B. Liu, H. C. Zeng, “Room temperature solution synthesis of monodispersed single-crystalline ZnO nanorods and derived hierarchical nanostructures”, Langmuir, vol. 20, pp. 4196-4204 (2004).
[72] P. M. Jones, J. A. May, J. B. Reitz and E. I. Solomon, “Electron spectroscopic studies of CH3OH chemisorption on Cu2O and ZnO single-crystal surfaces: Methoxide bonding and reactivity related to methanol synthesis”, J. Am. Chem. Soc., vol. 12, pp. 1506-1516 (1998).
[73] H. Tanaka, T. Shimakawa, T. Miyata, H. Sato and T. Minami, “Effect of AZO film deposition conditions on the photovoltaic properties of AZO-Cu2O heterojunctions”, Appl. Surface Sci., vol. 244, pp. 568-572 (2005).
[74] J. Chen, Y. Zhang, B. J. Skromme, K. Akimoto and S. J. Pachuta, “Properties of The Shallow O-Related Acceptor Level In Znse”, J. Appl. Phys., vol. 75, pp. 5109-5119 (1995).
[75] L. B. K. Law and J. T. L. Thong, “Simple fabrication of a ZnO nanowire photodetector with a fast photoresponse time”, Appl. Phys. Lett., vol. 88, pp. 133114-133116 (2006).
[76] D. K. Zhang, Y. C. Liu, Y. L. Liu and H. Yang, “The electrical properties and the interfaces of Cu2O/ZnO/ITO p-i-n heterojunction”, Physica B, vol. 351, pp. 178-183 (2004).
[77] W. Siripala, A. Ivanovskaya, T.F. Jaramillo, S.H. Baeck, E.W. McFarland, “A Cu2O/TiO2 heterojunction thin film cathode for photoelectrocatalysis”, Sol. Energy. Mater. Sol. Cells., vol. 77, pp. 229-237 (2003).
[78] H. Kobayashi, H. Mori, T. Ishida, Y. Nakato, “Zinc-oxide n-si junction solar-cells produced by spray-pyrolysis method”, J. Appl. Phys., vol. 77, pp. 1301-1307 (1995).
[79] X. D. Wang, J. Zhou, J. H. Song, J. Liu, N. S. Xu, Z. L. Wang and L. Zhong, “Piezoelectric field effect transistor and nanoforce sensor based on a single ZnO nanowire”, Nano Lett., vol. 6, pp. 2768-2772 (2006).
[80] J. Suehiro, N. Nakagawa, S. Hidaka, M. Ueda, K. Imasaka, M. Higashihata, T. Okada and M. Hara, “Dielectrophoretic fabrication and characterization of a ZnO nanowire-based UV photosensor”, Nanotechnol., vol. 17, pp. 2567-2573 (2006).
[81] Q. Wan, Q. H. Li, Y. J. Chen, X. L. He, X. G. Gao, J. P. Li and T. H. Wang, ”Positive temperature coefficient resistance and humidity sensing properties of Cd-doped ZnO nanowires”, Appl. Phys. Lett., vol. 84, pp. 3085-3087 (2004).
[82] C. Y. Lu, S. J. Chang, S. P. Chang, C. T. Lee, C. F. Kuo, H. M. Chang Y. Z Chiou, C. L. Hsu and I. C. Chen, “Ultraviolet photodetectors with ZnO nanowires prepared on ZnO:Ga/glass templates”, Appl. Phys. Lett., vol. 89, pp. 153101-153103 (2006).
[83] C. L. Hsu, S. J. Chang, Y. R. Lin, P. C. Li, T. S. Lin, S. Y. Tsai, T. H. Lu and I. C. Chen, “Ultraviolet photodetectors with low temperature synthesized vertical ZnO nanowires”, Chem. Phys. Lett., vol. 416, pp. 75-78 (2005).
[84] T. J. Hsueh, C. L. Hsu, S. J. Chang, C. Y. Lu, Y. R. Lin and I. C. Chen, “Crabwise ZnO nanowires: growth and field emission properties”, J. Nanosci. Nanotechnol., vol. 7, pp. 1076-1079, 2007
[85] T. J. Hsueh, C. L. Hsu, S. J. Chang and I. C. Chen, “Laterally grown ZnO nanowire ethanol gas sensors”, Sens. Actuators B.vol. 126, pp.473-477 (2007).
[86] S. C. Lyu, Y. Zhang, H. Ruh, H. J. Lee, H. W. Shim, E. K. Suh and C. J. Lee, “Low temperature growth and photoluminescence of well-aligned zinc oxide nanowires” Chem. Phys. Lett. vol. 363, pp. 134-138 (2002).
[87] B. J. Jin, S. H. Bae, S. Y. Lee and S. Im, “Effects of native defects on optical and electrical properties of ZnO prepared by pulsed laser deposition” Mater. Sci. Eng. B, vol. 71, pp. 301-305 (2000).
[88] Q. H. Li, T. Gao, Y. G. Wang and T. H. Wang, “Adsorption and desorption of oxygen probed from ZnO nanowire films by photocurrent measurements”, Appl. Phys. Lett. vol. 86, pp. 123117-123119 (2005).
[89] O. Harnack, C. Pacholski, H. Weller, A. Yasuda and J. M. Wessels, “Rectifying behavior of electrically aligned ZnO nanorods”, Nano Lett., vol. 3, pp. 1097-1101 (2003).
[90] Y. W. Heo, B. S. Kang, L. C. Tien, D. P. Norton, F. Ren, J. R. La Roche and S. J. Pearton, “UV photoresponse of single ZnO nanowires”, Appl. Phys. A, vol. 80, pp. 497-499 (2005).
[91] J. C. Carrano, P. A. Grudowski, C. J. Eiting, R. D. Dupuis and J. C. Campbell, “Very low dark current metal–semiconductor–metal ultraviolet photodetectors fabricated on single-crystal GaN epitaxial layers”, Appl. Phys. Lett. vol. 70, pp. 1992-1994 (1997).
[92] T. M. Berlicki, “Thermal vacuum sensor with compensation of heat transfer”, Sens. Actuators A, vol. 93, pp. 27-32 (2001).
[93] V. V. Evstifeev, N. M. Krylov, N. M. Sedin, B. L. Svistunov and P. P. Pershenkov, “Automatic ionization-thermocouple vacuum gage”, Measurement Techniques, vol. 40, pp. 127-129 (1997).
[94] M. Kimura, F. Sakurai, H. Ohta and T. Terada, “Proposal of a new structural thermal vacuum sensor with diode-thermistors combined with a micro-air-bridge heater”, Microelectron. Journal, vol. 38, pp. 171-176 (2007).
[95] F. T. Zhang, Z. Tang, J. Yu and R. C. Jin, “A micro-Pirani vacuum gauge based on micro-hotplate technology”, Sens. Actuators A, vol. 126, pp. 300-305 (2006).
[96] N. Pelletier, B. Beche, N. Tahani, J. Zyss, L. Camberlein and E. Gaviot, “SU-8 waveguiding interferometric micro-sensor for gage pressure measurement”, Sens. Actuators A vol.135 pp.179-184 (2007).
[97] H. Porte, V. Gorel, S. Kiryenko, J. P. Goedgebuer, W. Daniau and P. Blind, “Imbalanced Mach-Zehnder interferometer integrated in micromachined silicon substrate for pressure sensor”, J. Light. Tech. vol.17 pp. 229-233 (1999).
[98] K. Qian, T. Chen, B. Yan, Y. Lin, D. Xu, Z. Sun and B. Cai, “Simulation and fabrication of carbon nanotubes field emission pressure sensors”, Appl. Surface Sci., vol. 252, pp. 4198-4201 (2006).
[99] F. He, Q. A. Huang and M. Qin, “A silicon directly bonded capacitive absolute pressure sensor”, Sens. Actuators A, vol. 135, pp. 507-514 (2007).
[100] Y. Takahashi, M. Kanamori, A. Kondoh, H. Minoura and Y. Ohya, “Photoconductivity of ultrathin zinc oxide films”, Jpn. J. Appl. Phys., vol. 33, pp. 6611-6615 (1994).
[101] N. Barsan, M. Schweizer-Berberich and W. Göpel, “Fundamental and practical aspects in the design of nanoscaled SnO2 gas sensors: a status report”, Fresenius J. Anal. Chem. vol. 365 pp.287-304 (1999).
[102] J. C. Belmonte, J. Manzano, J. Arbiol, A. Cirera, J. Puigcorbe, A. Vila, N. Sabate, I. Gracia, C. Cane and J. R. Morante, “Micromachined twin gas sensor for CO and O-2 quantification based on catalytically modified nano-SnO2”, Sen. Actuators B. vol. 114 pp. 881-892 (2006).
[103] Y. Zhang, K. Yu, D. Jiang, Z. Zhu, H. Geng and L. Luo, “Zinc oxide nanorod and nanowire for humidity sensor”, Appl. Sur. Sci. vol. 242 pp.212-217 (2005).
[104] S. P. Yawale, S. S. Yawale and G. T. Lamdhade, “Tin oxide and zinc oxide based doped humidity sensors”, Sen. Actuators A, vol. 35, pp. 388-394 (2006).
[105] T. Gao, T. H. Wang, “Synthesis and properties of multipod-shaped ZnO nanorods for gas-sensor applications”, Appl. Phys. A, vol. 80, pp. 1451-1454 (2005).
[106] F. Hellegouarc’h, F. Arefi-Khonsari, R. Planade, J. Amouroux, “PECVD prepared SnO2 thin films for ethanol sensors”, Sens. Actuators B, vol. 73 pp. 27–31 (2001).
[107] P. Mitra, A. P. Chatterjee, H. S. Maiti, “ZnO thin film sensor”, Mater. Lett., vol. 35 pp. 33-38 (1998).
[108] T. Gao, T. H. Wang, “Vapor phase growth of ZnO nanorod-nanobelt junction arrays”, J. Nanosci. Nanotechnol. vol. 5 pp. 1120-1124 (2005).
[109] K. Arshak, I. Gaidan, “Development of a novel gas sensor based on oxide thick films”, Mater. Sci Eng. B, vol. 118 pp. 44-49 (2005).
[110] D. R. Gaskell, “Introduction to the Thermodynamics of Materials”, 3rd ed.; Taylor & Francis: London, pp. 169-548 (1995).
[111] H. Yoshiki, H. Kitahara, K. Hashimoto and A. Fujishima, “Pattern formation of Cu layer by photocatalytic reaction of ZnO thin film”, J. Electrochem, Soc., vol. 142, pp. L235-L237 (1995).
[112] H. Yoshiki, K. Hashimoto, “A. Fujishima, “Reaction Mechanism of Electraless Metal Deposition Using ZnO Thin Film (I): Process of Catalyst Formation”, J. Electrochem. Soc., vol. 142, pp. 428-430 (1995).
[113] J. F. Chang, H. H. Kuo, I. C. Leu and M. H. Hon, “The effects of thickness and operation temperature on ZnO:Al thin film CO gas sensor”, Sensors and Actuators B, vol. 84, pp. 258-264 (2002).