| 研究生: |
黃佳嘉 Huang, chia-chia |
|---|---|
| 論文名稱: |
ZnO:Al/鑭系鈣鈦礦薄膜異質接合對CO感測特性之研究 Investigation of High-Sensitivity CO Gas Sensors Based on ZnO:Al/La0.8Sr0.2Co0.5Ni0.5O3-x Heterocontact |
| 指導教授: |
張炎輝
Chang, Yen-Hwei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 137 |
| 中文關鍵詞: | 異質接合 、一氧化碳感測器 |
| 外文關鍵詞: | hetercontact, gas sensor |
| 相關次數: | 點閱:54 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以溶膠-凝膠製備p型之La0.8Sr0.2Co0.5Ni0.5O3-x旋鍍薄膜與RF磁控濺鍍法製備n型之ZnO:Al薄膜,使其具有異質接合之整流特性,配合不同的元件設計概念,探討其對CO感測特性之影響。
本研究固定p型之La0.8Sr0.2Co0.5Ni0.5O3-x旋鍍薄膜的製程條件,以不同氧分壓濺鍍、厚度、熱處理氣氛及熱處理時間為RF磁控濺鍍法製備n型之ZnO:Al薄膜之變數。實驗結果ZnO:Al(170nm)/La0.8Sr0.2Co0.5Ni0.5O3-x異質接合薄膜對CO之感測靈敏值確有顯著提升且適於在200℃下的低溫操作。而ZnO:Al/La0.8Sr0.2Co0.5Ni0.5O3-x異質接合薄膜靈敏值之變化,經XPS證明來自於ZnO:Al表面及La0.8Sr0.2Co0.5Ni0.5O3-x表面CO與吸附氧共同反應之結果,且ZnO:Al表面型態及結晶結構的改變為靈敏值變化的主要因素。當ZnO:Al濺鍍氣氛O2/Ar=3/7、膜厚為170nm且經過氧氣中300℃熱處理1小時後,可得最佳之感測條件,在200℃操作溫度下對200ppmCO之感測靈敏值可達46.02%。當ZnO:Al濺鍍氣氛O2/Ar=3/7、膜厚為170nm且無熱處理之ZnO:Al,在200℃操作溫度下對200ppmCO之感測靈敏值可達33.13%,並具有良好的再現性,電阻值可回復至接近80%的靈敏值。
Improvement of CO gas sensing property was obtained by adopting the design of a heterocontact (p-n junction) of semiconducting materials, as La0.8Sr0.2Co0.5Ni0.5O3 (p-type) in conjunction with ZnO:Al (n-type). Thin films of La0.8Sr0.2Co0.5Ni0.5O3 were coated on silicon wafers by sol-gel method. The films of ZnO:Al prepared by R.F. magnetron sputtering with 70% Ar and 30% O2 mixed gas were deposited on the La0.8Sr0.2Co0.5Ni0.5O3 films. On the basis of XPS analyses of O atoms in surface / lattice layers, there is a similar mechanism for both sides of the hetero-device using different materials. ZnO:Al/LSCNO heterocontact device annealed at 300℃in oxygen for 1 hr has a sensitivity of 46.02% for detecting 200ppm CO at 200℃. Non-annealed ZnO:Al/LSCNO heterocontact films showed the optimum dynamic recovery about 80% operated at 200℃ and 200ppm CO.
1. 蔡嬪嬪,曾明漢, “氣體感測器之簡介、應用及市場”, 材料與社會, 第68期 (1992) 50.
2. 蔡嬪嬪, “氣體感測器的新動向-微機電元件產品開發”, 工業材料, 150期6月 (1999) 92.
3. 蔡嬪嬪, “氣體感測器市場發展近況”, 工業材料, 88期4月 (1994) 101.
4. Albert L. Love, “Carbon Monoxide in the Home Environment”, University Microfilms International, Michigan (1986).
5. 王守芃, 余榮彬, 湯大同, “一氧化碳氣體監測器評估”, 勞工安全衛生研究季刊”, 第三期第三卷 (1995) 61.
6. K. Wark, C. F. Warner and W. T. Davis, “Air pollution: its origin and control”, Addison-Wesley Pub. Co., Massachusetts (1998).
7. 葉欣誠, “環境工程與科學概論”, 五南圖書出版股份有限公司 (2000) Chap7.
8. Gilbert M. Masters, “Introduction to Environmental Engineering and Science”, Prentice Hall, New Jersey (1997).
9. J. H Seinfeld, “Atmospheric Chemistry and Physics of Air Pollution”, Wiley, New York (1986).
10. “勞工安全衛生法規彙編(三)”, 行政院勞工委員會 (1998).
11. “室內空氣中一氧化碳污染問題研究”, 行政院環境保護署 (1992).
12. T. A. Jones, B. Mann and J. G. Firth, “The effect of the physical from of the oxide on the conductivity changes produced by CH4, CO and H2O on ZnO”, Sensors and Actuators, 5(1) (1984) 75.
13. 吳培茲, “鈣鈦礦型陶瓷體粉末之催化特性與電特性之研究”, 國立成功大學碩士論文 (1990).
14. 蔡果來, “鈣鈦礦結構之La1-ySryCo1-x(Cu/Ni)xO3-δ薄膜對一氧化碳感測特性之研究”, 國立成功大學博士論文 (2001).
15. H. L. Hartnagel, A. K. Jagadish, “Semiconducting Transparent Thin Films”, Institute of Physics Pub., Philadelphi (1995).
16. R. A. Swalin., “Thermodynamics of Solids”, Wiley, New York (1974).
17. U. Lampe and J. Muller, “Thin-Film ZnO properties and application” Ceramics Bulletin, 69(12) (1990) 1959.
18. F. C. M. Van De Pol, F. R. Blom and Th. J. A. Popma, “R.F. Planar Magnetron Sputtered ZnO Films I: Structure Propreties”, Thin Solid Films, 204 (1991) 349.
19. B. T. Khuri-Yakub, G. S. Kino and P. Galle, “Studies of the Optimum Conditions for Growth of RF-Sputtered ZnO Films”, J. Appl. Phys., 46(8) (1975) 3266.
20. S. Srivastav, C V R Vasant Kumar and A Mansingh, “Effect of Oxygen on the Physical Parameters of RF Sputtered ZnO Thin Film”, J. Phys. D: Appl. Phys., 22 (1989) 1768.
21. E. M. Bachari, G. Baud, S. Ben Amor, M. Jacquet, “Structure and Optical Properties of Sputtered ZnO Films”, Thin Solid Films, 348 (1999) 165.
22. T. Hada, K. Wasa and S. Hayakawa, “Structure and Electrical Properties of Zinc Oxide Films Prepared by Low Pressure Sputtering System”, Thin Solid Films, 7 (1971) 135.
23. N. M. Beekman, “Effect of Oxygen Chemisorption and Photodesorption on the Conductivity of ZnO Powder Layers”, J. Chem. Soc. Faraday Trans. 74 (1978) 31.
24. A. Cimino, E. Molinaru and F. Cramarossa, “Oxygen Chemisoption and Surface p-type Behavior of ZnO Powders”, J. Catalysis, 2 (1963) 315
25. W. Göpel, “Reactions of Oxygen with ZnO-10 0 Surfaces”, J. Vac. Sci. Technol., 15(4) (1978) 1298.
26. S. Samson and C. G. Fonstad, “Defect Structure and Electronic Donor Levels in Stannic Oxide Crystals”, J. Appl. Phys., 44(10) (1973) 4618.
27. Z. M. Jarzebski and J. P. Marton, “Physical Properties of SnO2 Materials”, J. Electrochem. Soc., 123 (1976) 333.
28. J. Jacquemin, C. Alibert and G. Bourdure, “Electronic Energy Band Calculations in SnO2”, Solid State Commun., 10 (1972) 1295.
29. J. Watson, “The Tin Oxide Gas Sensor and its Applications”, Sensors and Actuators, 5 (1984) 29.
30. B. Bott, T. A. Jones and B. Mann, “The Detection and Measurement of CO using ZnO Single Crystals”, Sensors and Actuators, 5 (1984) 65
31. S. R. Morrison, “The Chemical Physics of Surface”, Plenum Press, New York (1990).
32. S. R. Morrison and J. P. Bonnelle, “Surface State Additives in the Catalytic Oxidation of Carbon Monoxide”, J. Catalysis, 25 (1972) 416.
33. J. F. McAleer, P. T. Mosely, J. O. W. Norris and D. E. Williams, “Tin Dioxide Gas Sensors”, J. Chem. Soc., Faraday Trans. I, 83(1987) 1323.
34. 吳朗, “電子陶瓷入門”, 全欣出版社 (1992) chap2.
35. K. B. Uhlman, “Introduction to Ceramics”, Wiley, New York (1976).
36. M. Kuwabara and T. Ide, “CO Gas Sensitivity in Porous Semiconducting Barium Titanate Ceramics”, Am. Ceram. Soc. Bull., 66 (1987) 1401.
37. L. N. Yannopoulos, “A p-type Semiconductor Thick Film Gas Sensors”, Sensors and Actuators, 12 (1987) 263.
38. J. Gerblinger, U. Lampe and H. Meixner, “Cross-Sensitivity of Carious Doped Strontium Titanate Films to CO, CO2, H2, H2O and CH4”, Sensors and Actuators, B18-19 (1994) 529.
39. U. Lampe, J. Gerblinger and H. Meixner, “Carbon-Monoxide Sensors based on Thin Films of BaSnO3”, Sensors and Actuators, B24-25 (1995) 657.
40. R. Sorita and T. Kawano, “A High Selective CO Sensor Using LaMnO3 Electrode-Attached Zirconia Galvanic Cell”, Sensors and Actuators, B40 (1997) 29.
41. T. Nakamura, M. Misono, T. Uchijima and Y. Yoneda, “Catalytic Properties of Perovskite-type Mixed Oxides, La1-xSrxCoO3”, Nippon Kagaku Kaishi (1980) 1679.
42. T. Nakamura, M. Misono and Y. Yoneda, “Catalytic Properties of Perovskite-type Mixed Oxides La1-xSrxCoO3”, Bull. Chem. Soc. Jpn. 55 (1982) 394.
43. P. K. Gallagher, D. W. Johnson and E. M. Vogel, “Preparation, Structure, and Selected Catalytic Properties of the System LaMn1-xCuxO3-y”, J. Am. Ceram. Soc., 60(1-2) (1977) 28.
44. E. M. Vogel, D. W. Johnson, Jr., and P. K. Gallagher, “Oxygen Stoichiometry in LaMn1-xCuxO3+y by Thermograimetry”, J. Am. Ceram. Soc., 60(1977) 31.
45. T. Arakawa, K. I. TaKada, Y. Tsunemine and J. Shiokawa, “CO Gas Sensitivity of Reduced Perovskite Oxide LaCoO3-x”, Sensors and Actuators, 14 (1988) 215.
46. 蕭泉安, “鈷酸鑭系陶瓷體粉末製作及其催化特性之研究”, 國立成功大學碩士論文 (1989).
47. Y. Nakamura, A. Ando, T. Tsurutani, “Gas Sensitivity of CuO/ZnO Hetero-Contact”, Chemistry Letters, (1986) 413.
48. Jeong Duk Choi, Gyeong Man Choi, “Electrical and CO Gas Sensing Properties of Layered ZnO-CuO Sensor”, Sensors and Actuators, B69 (2000) 120.
49. R. Mochinaga, T. Yamasaki, T. Arakawa, “The Gas-Sensing of SmCoOx/MOx (M=Fe, Zn, In, Sn) having a Heterojunction”, Sensors and Actuators, B52 (1998) 96.
50. W. J. Moon, J. H. Yu, G. M. Choi, “The CO and H2 Gas Selectivity of CuO-doped SnO2–ZnO Composite Gas Sensor”, Sensors and Actuators, B87 (2002) 464.
51. C. Leach, Z. Ling and R. Freer, “Direct Observation of the Barrier Structure in a Heterojunction Gas Sensor using Conductive Mode Microscopy”, Scripta mater., 42 (2000) 1083.
52. E. Traversa, M. Miyayama, H. Yanagida, “Gas Sensitivity of ZnO/La2CuO4 Hetero-contacts”, Sensors and Actuators, B17 (1994) 257.
53. P. Ciureanu, “Thin Film Resistive Sensors”, Institute of Physics Publishing (1992) 451.
54. D. M. Roy and R. Roy, “An Experimental Study of the Formation and Properties of Synthetic Serpentines and related Layer Silicate Minerals”, Am. Mineral., 39 (1954) 957.
55. H. Dislich, “New Routes to Multicomponent Oxide Glasses”, Angewandt Chemie, 10(6) (1971) 363.
56. 陳慧英, 黃定加和朱琴億, “溶膠凝膠法在薄膜製備上之應用”, 化工技術, 無機薄膜之製備與應用專輯, 第80期11月 (1999) 152.
57. J. D. Mackenzie, “Glasses from Melts and Glasses from Gels”, J. Non-Crystalline Solids, 48 (1982) 1.
58. L.W. Tai and P.A. Lessing, “Modified Resin-Intermediate Processing of Perovskite Powders: Part I Optimization of Polymeric Precursors”, J. Mater. Res., 7(2) (1992) 502.
59. L. W. Tai and P.A. Lessing, “Modified Resin-Intermediate Processing Nonagglomerated Sr-doped Lanthanum Chromite Powders”, J. Mater. Res., 7(2) (1992) 511.
60. H. Schmidt, “Chemistry of Material Preparation by the Sol-Gel Process”, J. Non-Crystalline Solids, 100 (1988) 51.
61. M. P. Pechini, “Method of Preparing Lead and Alkaline Earth Titanates and Niobates and Coating Method Using the Same to Form a Capacitor”, U. S. Pat., 330(3) (1967) 697.
62. S. Brunauer, L.S. Deming, W.S. Deming and E.J. Teller, “On a Theory of the Van Der Waals Adsorption of Gases’’, J. Am. Chem. Soc., 60 (1938) 309.
63. J. E. Lennard-Jones, Trans. Faraday Soc., 28 (1932) 333.
64. S. J. Gentry and T.A. Jones, “The Role of Catalysis in Solid-State Gas Sensors”, Sensors and Actuators, 10 (1986) 141.
65. S. M. Sze, “Physics of Semiconductor”, John Wiley, New York (1981) chap3.
66. F. Capasso and G. Margaritondo, “Heterojunction Band Discontinuities”, North-Holland, Amsterdam, (1987) part. I.
67. 莊達仁, “VLSI 製造技術”, 高立圖書有限公司 (2002) Chap2.
68. D. E. Williams, “Solid State Gas Sensors”, ed by P. T. Moseley and B. G. Tofield, Bristol: A. Hilger (1987) 115.
69. M. S. Berberich, J. G. Zheng, U. Weimar, W. Göpel, N. Bârsan, E. Pentia and A. Tomescu, “The Effect of Pt and Pd Surface doping on the Response of Nanocrystalline Tin Dioxide Gas Sensor to CO”, Sensors and Actuators, B3l (1996) 71.
70. G. Mattinelli and M. C. Carotta, “A Student of the Conductance and Capacitance of Pure and Pd-doped SnO2 Thick Film”, Sensors and Actuators, B19 (1994) 720.
71. N. Ichinose and H. Okuma, “Oxide Semiconductors for Detecting Gaseous Components”, Ceram. Jpn., 11(3) (1976) 205.
72. S. Saito, M. Miyayama, K. Koumoto and H. Yanagida, “Gas Sensing Characteristics of Porous ZnO and Pt/ZnO Ceramics”, J. Am. Ceram. Soc., 68(1) (1985) 40.
73. T. Engel and G. Ertl, “Advances in Catalysis”, Academic Press, Boston, 28 (1979) 1.
74. N. J. Dayan, S. R. Sainkar and R. N. Karekar, “On the Highly Selective ZnO:Al2O3 based Thick Film Hydrogen Sensors”, J. M. S. L., 16 (1997) 1952.
75. H. Nanto, H. Sokooshi and T. Kawai, “Aluminum-doped ZnO Thin Film Gas Sensor Capable of Detecting Freshness of Sea Foods”, Sensors and Actuators, B13-14 (1993) 715.
76. K. C. Park, D.Y. Ma and K.H. Kim, “The Physical Properties of Al-doped Zinc Oxide Films prepared by RF Magnetron Sputtering”, Thin Solid Films, 305 (1997) 201.
77. T. H. Kwon, S. H. Park, J. Y. Ryu and H. H. Choi, “Zinc Oxide Thin Film doped with Al2O3, TiO2 and V2O5 as Sensitive Sensor for Trimethylamine Gas”, Sensors and Actuators, B46 (1998) 75.
78. J. F. Chang, H. H. Kuo, I. C. Leu, M. H. Hon, “The Effects of Thickness and Operation Temperature on ZnO:Al Thin Film CO Gas Sensor”, Sensors and Actuators, B84 (2002) 258.
79. C. Xu, J. Tamaki, N. Miura and N. Yamazoe, “Grain Size Effect on Gas Sensitivity of Porous SnO2-based Element”, Sensors and Actuators, B3 (1991) 147.
80. G. B. Barbi, J. P. Santos, P. Serrini, P. N. Gibson, M. C. Horrillo and L. Manes, “Ultrafine Grain-Size Tin-Oxide Films for Carbon Monoxide Monitoring In Urban Environment”, Sensors and Actuators, B24-25 (1995) 559.
81. G. S. V. Coles, G. Williams and B. Smith, “Selectivity Studies on tin Oxide based Semiconductor Gas Sensors”, Sensors and Actuators, B3 (1991) 7.
82. D. H. Yoon, G. M. Choi, “Microstructure and CO Gas Sensing Properties of Porous ZnO Produced by Starch Addition”, Sensors and Actuators, B45 (1997) 251.
83. V. Agarwal, Meilin Liu, “Preparation of Barium Cerate-Based Thin Films using a Modified Pechini process”, Journal of Materials Science, 32 (1997) 619.
84. G. Binning, H. Rohrer, “Scanning Tunneling Microscopy”, Surface Science, 126(1983) 236.
85. T. Ishihara, K. Kometani, Y. Nishi and Y. Takita, “Improved Sensitivity of CuO-BaTiO3 Capacitive-type CO2 Sensor by Additives”, Sensors and Actuators, B28 (1995) 49.
86. 邱春茂, “鑭鍶鈷系鈣鈦礦結構薄膜對CO感測特性之研究”, 國立成功大學博士論文 (1999).
87. Charles Kittel, “Introduction to Solid State Physics”, John Wiley, New York (1996) Chap3.
88. C. R. Aita, A. J. Purdes, R. J. Lad, and P. D. Funkenbusch, “The Effect of O2 on Reactively Sputtered Zinc Oxide”, J. Appl. Phys., 51 (1980) 5533.
89. D. H. Zhang, G. E. Brodie, “Crystalline Orientation and the related Photoresponse of Hxagonal ZnO Films deposited by r.f. Sputtering”, Thin Solid Films, 251 (1994) 151.
90. N. Fujimura, T. Nishihara, S. Goto, J. Xu and T. Ito, “Control of Preferred Orientation for ZnOx Films: Control of Self-Texture”, Journal of Crystal Growth, 130 (1993) 269.
91. F. V. Lukina, “Scanning Probe Microscope”, State Research Institute of Physical Problems, Moscow (1998) 100.
92. M. D. Giulio, G. Micocci, A. Serra, A. Tepore, R. Rella and P. Siciliano, “Characteristics of Reactively Sputtered Pt-SnO2 Thin Films for Gas Sensors”, J. Vac. Sci. Technol., A14(4) (1996) 2215.
93. A. van der Drift, “Evolutionary Selection a Principle Governing Growth Orientation in Vapour-Deposited Layers”, Phlips Res. Repts, 22 (1967) 267.
94. J. C. Lodder, T. Wielinga and J. Worst, “R.F.-Sputtered Co-Cr Layers for Perpendicular Magnetic Recording I:Structural Properties”, Thin Solid Films, 101 (1983) 61.
95. N. Yamznoe, “New Approaches for Improving Semiconductor Gas Sensors”, Sensors and Actuators, B5 (1991) 7.
96. J. F. McAleer, P. T. Mosely, J. O. W. Norris and D. E. Williams, “Tin Dioxide Gas Sensors”, J. Chem. Soc., Faraday Trans. I, 83 (1987) 1323.
97. Tascón J. M. D. and Tejuca L. G., “Catalytic Activity of Perovskite-type Oxides LaMeO3”, React. Kinet. Catal. Lett., 15(2) (1980) 185.
98. T. Minami, T. Miyata and T. Yamamoto, “Stability of Transparent Conducting Oxide Films for use at High Temperature”, J. Vav. Sci. Trahnol., A17(4) (1999) 1822.
99. G. E. Heiland Mollwo and F. Stockmann, “Electronic Process in Zinc Oxide”, Solid State Physics 8, Academic Press, Boston (1959) 191.
100.H. Watanabe, M. Wada and T. Takahashi, “Effect of Oxygen on the Electrical Conductivity of ZnO Powder”, Denshi Shashin (Electrphotography), 7(1) (1966) 1.
101.A. Cimino, E., Molinaru and F. Cramarossa, “Oxygen Chemisoption and Surface p-type Behaviour of ZnO Powders”, J. Catalysis, 2 (1963) 315.
102.U. Lampe, M. Fleischer and H. Meixner, “Lambda Measurement with Ga2O3”, Sensors and Actuators, B17 (1994) 187.
103.J. M. D. Tascón, J. G. Fierro and L. G. Tejuca, “Kinetics and Mechanism of CO Oxidation on LaCoO3”, Z. Phys. Chem., 124 (1980) 249.
104.P. K. Clifford and D. T. Tuma, “Characteristics of Semiconductor Gas Sensors I. Steady State Gas Response”, Sensors and Actuators, B3 (1982) 233.
105.J. Watson, K. Ihokura, G. S. V. Coles, “The Tin Dioxide Gas Sensor”, Meas. Sci. Technol., 4 (1993) 711.
106.陳俞仲, “SnO2/鑭系鈣鈦礦薄膜異質接合對CO感測特性之研究”, 國立成功大學碩士論文 (2001).
107.D. G. McDonald, “The Nobel Laureate Versus the Graduate Student”, Physics today, July (2001) 46.