簡易檢索 / 詳目顯示

研究生: 周文安
Chou, Wen-An
論文名稱: 廢棄石墨烯鈣鈦礦太陽能電池之再活化研究
Reactivation of Spent Perovskite-Graphene Hybrid Solar Cells
指導教授: 王鴻博
Wang, H. Paul
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 133
中文關鍵詞: 鈣鈦礦太陽能電池石墨烯穩定性再活化
外文關鍵詞: Perovskite solar cells, Graphene, Stability, Reactivation
相關次數: 點閱:71下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著綠色能源需求量的上升,太陽能電池的發展已成為被關注且日趨重要的議題。近年來,鈣鈦礦太陽能電池(Perovskite solar cells, PSCs)被視為極具潛力,以相對低的製造成本,將太陽光有效地轉換成電能的一種新興科技。然而,PSCs欲走向商業化,必須克服幾項重大挑戰,其困境也成為本研究三大研究目的之動機: (I) 研製石墨烯(reduced graphene oxide, rGO)作為鈣鈦礦太陽能電池之低成本電洞傳輸材料;(II) 混摻維他命C (vitamin C)於CH3NH3PbI3¬層,以增加PSCs的操作穩定性;(III) 發展再活化廢棄PSCs的新穎方法,以減少其原料中「鉛」對於環境危害的疑慮及影響。

    以簡單、低成本的方式製備石墨烯,並以掃描式電子顯微鏡(SEM)、穿透式電子顯微鏡(TEM)、X光繞射(XRD)、拉曼光譜(Raman)、傅立葉轉換光譜(FTIR)及X光電子能譜(XPS)進行材料特性分析。當混摻0.05 wt% rGO於CH3NH3PbI3¬層中,電池的光電轉換效率可達9%,顯著優於沒加入石墨烯的PSCs (6%)。加入石墨烯,會促使CH3NH3PbI3結晶性的增加及電子電洞再結合率的下降,其可能成為混摻石墨烯PSCs效率提高的主要原因。

    當PSCs於空氣中進行連續照光的穩定性測試,可觀察到未混摻維他命C的CH3NH3PbI3迅速地被分解,且在光照3小後轉換效率便下降到原本的一半。而當混摻2.5 wt% vitamin C於¬主動層中,CH3NH3PbI3有較佳的操作穩定性,在光照11小後光電轉換效率僅下降約10%。因此,活性氧化物種(ROS)可能在分解CH3NH3PbI3前,能有效被維他命C去除。

    利用碳電極具孔洞結構的特性,發展以簡單製程再活化廢棄PSCs的方法。在廢棄的PSCs上滴入CH3NH3I溶液後,可復原被分解的CH3NH3PbI3結晶,且在400-800 nm可見光波段的吸收值,相似於未老化的PSCs。 因此,再活化PSCs的光電轉換效率可達初始的70%以上 。

    本研究發展PSCs新穎技術,以石墨烯為電洞傳輸層在空氣中製備較穩定且具環境友善性的PSCs。並以此研究為基石,期望未來將PSCs採全固態塗佈方式,大幅應用於已存在之室外向陽屋頂、牆壁及窗戶,大面積製備太陽能牆或屋頂,突破傳統太陽能板昂貴、土地遮蔽的缺點,大幅提升綠色能源產電比率。

    The development of photovoltaic cells has been becoming much more important with the increasing world’s green energy demand. Recently, perovskite solar cells (PSCs) have been considered as the promising photovoltaic technology with high energy conversion efficiencies and low fabrication costs. Nevertheless, some challenges need to be overcome when PSCs are considered on a mass-production scale, which therefore motivated three major objectives of this research: (I) to prepare graphene (rGO) for the PSCs as a cost-effective hole conductor;(II) to enhance the operational stability of PSCs by adding a small amount of vitamin C antioxidant in the CH3NH3PbI3;(III) to develop a novel method to reactivate spent PSCs to reduce the negative concerns of the use of lead.

    Graphene was prepared from graphite and characterized by SEM, TEM, TGA, XRD, Raman, FTIR, and XPS spectroscopy. Compared to the power conversion efficiency (PCE) of 6% for the PSCs without the incorporation of rGO, the solar cells with 0.05 wt% of rGO in the perovskite layer demonstrate a better PCE up to 9%. The improved efficiencies of the rGO/perovskite hybrid solar cells may be mainly attributed to the increased crystallinity of perovskite and the reduced recombination of electrons and holes.

    When exposed to both light and air, the solar cells with CH3NH3PbI3 as a photoactive layer rapidly degrade and exhibit a 50% drop in PCE from its initial value within 3 h. In the presence of 2.5wt% of vitamin C in perovskite layer, the PSC with significantly improved stability shows a relatively small 10% drop in PCE over the 11 h aging period, suggesting that the vitamin C antioxidant may be able to scavenge the reactive oxygen species (ROS) from the perovskite film before ROS discompose CH3NH3PbI3.

    Taking the advantage of porous structure in the carbon electrodes, a simple approach for reactivation of spent PSCs was newly developed. After the CH3NH3I solution infiltrated through carbon electrodes, the crystallinity of the aged CH3NH3PbI3 films can be restored. Furthermore, the reactivated perovskite film possesses good light absorption at the wavelength range from 400-800 nm, which is similar the fresh sample. The reactivated PSCs can retain about 70% at least of their original efficiency.

    These observations offer a novel method to fabricate relatively stable and environmental-friendly PSCs in air with rGO as the low-cost hole-transporting material. It may also pave a way for layer-by-layer coating of PSCs on any unrestricted substrates in the near future, such as outdoor roofs, walls, and windows. By overcoming the limitations of silicon solar cells, PSCs may make substantial progress towards ubiquitous green energy generation.

    摘要 I Abstract III 誌謝 V Content VI LIST OF TABLES VIII LIST OF FIGURES IX CHAPTER 1 INTRODUCTION 1 CHAPTER 2 LITERATURE STUDIES 5 2.1 Solar energy 6 2.2 Solar cells 9 2.3 Perovskite solar cells 16 2.3.1 The historical origin of perovskite 16 2.3.2 Physical properties of perovskite 16 2.3.3 Evolution of perovskite solar cells structures 17 2.3.4 Deposition methods of perovskite layer 19 2.3.5 Stability issue 21 2.4 Graphene-based solar cells 32 CHAPTER 3 EXPERIMENT METHODS 35 3.1 Experimental procedures 35 3.2 Preparation of graphene oxide (GO) 38 3.3 Preparation of reduced graphene oxide (rGO) 38 3.4 Device fabrication 39 3.4.1 Deposition of electron transport layer 39 3.4.2 Deposition of perovskite layer 40 3.4.3 Deposition of counter electrode 40 3.5 Characterization 42 3.5.1 Efficiency measurement 42 3.5.2 Ultraviolet–visible spectroscopy 43 3.5.3 X-ray diffraction (XRD) 43 3.5.4 X-ray photoelectron spectroscopy (XPS) 43 3.5.5 Photoluminescence spectroscopy 44 3.5.6 Field Emission-Scanning/Transmission Electron Microscopy 44 3.5.7 Fourier Transform Infrared spectroscopy (FTIR) 44 3.5.8 Raman spectroscopy 44 3.5.9 Thermogravimetric analysis (TGA) 45 CHAPTER 4 RESULTS AND DISCUSSION 46 4.1 Preparation of graphene from graphite 46 4-2 Perovskite-Graphene Hybrid Solar Cells 60 4-3 Enhanced stability of perovskite solar cells with vitamin C anti-oxidant 74 4-4 Reactivation of Spent Perovskite Solar Cells 90 CHAPTER 5 CONCLUSION 103 REFERENCES 105 APPENDIX A 125

    Administration, U. E. I. (2014). Annual Energy Outlook: US Department of Energy Washington DC.
    Agenda, G. (2016). Top 10 Emerging Technologies of 2016.
    Ali, N., Hussain, A., Ahmed, R., Wang, M., Zhao, C., Haq, B. U., & Fu, Y. Q. (2016). Advances in nanostructured thin film materials for solar cell applications. Renewable and Sustainable Energy Reviews, 59, 726-737.
    Altermatt, P. P. (2011). Models for numerical device simulations of crystalline silicon solar cells—a review. Journal of computational electronics, 10(3), 314-330.
    Aman, M., Solangi, K., Hossain, M., Badarudin, A., Jasmon, G., Mokhlis, H., Bakar, A., & Kazi, S. (2015). A review of Safety, Health and Environmental (SHE) issues of solar energy system. Renewable and Sustainable Energy Reviews, 41, 1190-1204.
    Ameri, T., Li, N., & Brabec, C. J. (2013). Highly efficient organic tandem solar cells: a follow up review. Energy & Environmental Science, 6(8), 2390-2413.
    Archer, M. D., & Green, M. A. (2014). Clean electricity from photovoltaics (Vol. 4): World Scientific.
    Aristidou, N., Sanchez‐Molina, I., Chotchuangchutchaval, T., Brown, M., Martinez, L., Rath, T., & Haque, S. A. (2015). The role of oxygen in the degradation of methylammonium lead trihalide perovskite photoactive layers. Angewandte Chemie International Edition, 54(28), 8208-8212.
    Asahi, S., Teranishi, H., Kusaki, K., Kaizu, T., & Kita, T. (2017). Two-step photon up-conversion solar cells. Nature communications, 8, 14962.
    Bae, S., Kim, H., Lee, Y., Xu, X., Park, J.-S., Zheng, Y., Balakrishnan, J., Lei, T., Kim, H. R., & Song, Y. I. (2010). Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nature nanotechnology, 5(8), 574-578.
    Bag, A., Hota, M., Mallik, S., & Maiti, C. (2013). Graphene oxide-based flexible metal–insulator–metal capacitors. Semiconductor Science and Technology, 28(5), 055002.
    Betts, R. A., Jones, C. D., Knight, J. R., Keeling, R. F., & Kennedy, J. J. (2016). El Nino and a record CO2 rise. Nature Climate Change.
    Bi, D., Yang, L., Boschloo, G., Hagfeldt, A., & Johansson, E. M. (2013). Effect of different hole transport materials on recombination in CH3NH3PbI3 perovskite-sensitized mesoscopic solar cells. The journal of physical chemistry letters, 4(9), 1532-1536.
    Bo, Z., Shuai, X., Mao, S., Yang, H., Qian, J., Chen, J., Yan, J., & Cen, K. (2014). Green preparation of reduced graphene oxide for sensing and energy storage applications. Scientific reports, 4, 4684.
    Bo, Z., Yu, K., Lu, G., Wang, P., Mao, S., & Chen, J. (2011). Understanding growth of carbon nanowalls at atmospheric pressure using normal glow discharge plasma-enhanced chemical vapor deposition. Carbon, 49(6), 1849-1858.
    Boix, P. P., Nonomura, K., Mathews, N., & Mhaisalkar, S. G. (2014). Current progress and future perspectives for organic/inorganic perovskite solar cells. Materials Today, 17(1), 16-23.
    Brenner, T. M., Egger, D. A., Kronik, L., Hodes, G., & Cahen, D. (2016). Hybrid organic—inorganic perovskites: low-cost semiconductors with intriguing charge-transport properties. Nature Reviews Materials, 1, 15007.
    Bryant, D., Aristidou, N., Pont, S., Sanchez-Molina, I., Chotchunangatchaval, T., Wheeler, S., Durrant, J. R., & Haque, S. A. (2016). Light and oxygen induced degradation limits the operational stability of methylammonium lead triiodide perovskite solar cells. Energy & Environmental Science, 9(5), 1655-1660.
    Bumpus, A., & Comello, S. (2017). Emerging clean energy technology investment trends. Nature Climate Change, 7(6), 382-385.
    Burschka, J., Pellet, N., Moon, S.-J., Humphry-Baker, R., Gao, P., Nazeeruddin, M. K., & Grätzel, M. (2013). Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature, 499(7458), 316-319.
    Cai, P.-F., Su, C.-J., Chang, W.-T., Chang, F.-C., Peng, C.-Y., Sun, I., Wei, Y.-L., Jou, C.-J., & Wang, H. P. (2014). Capacitive deionization of seawater effected by nano Ag and Ag@ C on graphene. Marine pollution bulletin, 85(2), 733-737.
    Chen, Q., Zhou, H., Hong, Z., Luo, S., Duan, H.-S., Wang, H.-H., Liu, Y., Li, G., & Yang, Y. (2013). Planar heterojunction perovskite solar cells via vapor-assisted solution process. Journal of the American Chemical Society, 136(2), 622-625.
    Chen, Y., He, M., Peng, J., Sun, Y., & Liang, Z. (2016). Structure and growth control of organic–inorganic halide perovskites for optoelectronics: From polycrystalline films to single crystals. Advanced Science, 3(4).
    Cheng, Y.-b., Pascoe, A., Huang, F., & Peng, Y. (2016). Print flexible solar cells. Nature, 539(7630), 488-489.
    Chin, X. Y., Cortecchia, D., Yin, J., Bruno, A., & Soci, C. (2015). Lead iodide perovskite light-emitting field-effect transistor. Nature communications, 6, 7383.
    Chowdhury, T. H., Islam, A., Mahmud Hasan, A., Terdi, M., Arunakumari, M., Prakash Singh, S., Alam, M., Bedja, I. M., Hafidz Ruslan, M., & Sopian, K. (2016). Prospects of Graphene as a Potential Carrier‐Transport Material in Third‐Generation Solar Cells. The Chemical Record, 16(2), 614-632.
    Christians, J. A., Fung, R. C., & Kamat, P. V. (2013). An inorganic hole conductor for organo-lead halide perovskite solar cells. Improved hole conductivity with copper iodide. Journal of the American Chemical Society, 136(2), 758-764.
    Deng, Y., Peng, E., Shao, Y., Xiao, Z., Dong, Q., & Huang, J. (2015). Scalable fabrication of efficient organolead trihalide perovskite solar cells with doctor-bladed active layers. Energy & Environmental Science, 8(5), 1544-1550.
    Deschler, F., Price, M., Pathak, S., Klintberg, L. E., Jarausch, D.-D., Higler, R., Hüttner, S., Leijtens, T., Stranks, S. D., & Snaith, H. J. (2014). High photoluminescence efficiency and optically pumped lasing in solution-processed mixed halide perovskite semiconductors. The journal of physical chemistry letters, 5(8), 1421-1426.
    Di Giacomo, F., Razza, S., Matteocci, F., D'Epifanio, A., Licoccia, S., Brown, T. M., & Di Carlo, A. (2014). High efficiency CH 3 NH 3 PbI (3− x) Cl x perovskite solar cells with poly (3-hexylthiophene) hole transport layer. Journal of Power Sources, 251, 152-156.
    Docampo, P., Ball, J. M., Darwich, M., Eperon, G. E., & Snaith, H. J. (2013). Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates. Nature communications, 4.
    Edri, E., Kirmayer, S., Cahen, D., & Hodes, G. (2013). High open-circuit voltage solar cells based on organic–inorganic lead bromide perovskite. The journal of physical chemistry letters, 4(6), 897-902.
    Eperon, G. E., Burlakov, V. M., Docampo, P., Goriely, A., & Snaith, H. J. (2014). Morphological control for high performance, solution‐processed planar heterojunction perovskite solar cells. Advanced Functional Materials, 24(1), 151-157.
    Erik, M. (2013). Using a two-step deposition technique to prepare perovskite (CH 3 NH 3 PbI 3) for thin film solar cells based on ZrO 2 and TiO 2 mesostructures. Rsc Advances, 3(41), 18762-18766.
    Etgar, L. (2016). Hole Conductor Free Perovskite Based Solar Cells: Springer.
    Etgar, L., Gao, P., Xue, Z., Peng, Q., Chandiran, A. K., Liu, B., Nazeeruddin, M. K., & Grätzel, M. (2012). Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells. Journal of the American Chemical Society, 134(42), 17396-17399.
    Fan, Z., Wang, K., Wei, T., Yan, J., Song, L., & Shao, B. (2010). An environmentally friendly and efficient route for the reduction of graphene oxide by aluminum powder. Carbon, 48(5), 1686-1689.
    Frankl, P., Nowak, S., Gutschner, M., Gnos, S., & Rinke, T. (2010). International energy agency technology roadmap: solar photovoltaic energy.
    Gamliel, S., Dymshits, A., Aharon, S., Terkieltaub, E., & Etgar, L. (2015). Micrometer sized perovskite crystals in planar hole conductor free solar cells. The Journal of Physical Chemistry C, 119(34), 19722-19728.
    Gao, M., Pan, Y., Huang, L., Hu, H., Zhang, L., Guo, H., Du, S., & Gao, H.-J. (2011). Epitaxial growth and structural property of graphene on Pt (111). Applied Physics Letters, 98(3), 033101.
    Giovannetti, G., Khomyakov, P., Brocks, G., Karpan, V. v., Van den Brink, J., & Kelly, P. (2008). Doping graphene with metal contacts. Physical Review Letters, 101(2), 026803.
    Gong, J., Darling, S. B., & You, F. (2015). Perovskite photovoltaics: life-cycle assessment of energy and environmental impacts. Energy & Environmental Science, 8(7), 1953-1968.
    Grätzel, M. (2014). The light and shade of perovskite solar cells. Nature materials, 13(9), 838-842.
    Graetzel, M., Janssen, R. A., Mitzi, D. B., & Sargent, E. H. (2012). Materials interface engineering for solution-processed photovoltaics. Nature, 488(7411), 304-312.
    Grätzel, M. (2017). The Rise of Highly Efficient and Stable Perovskite Solar Cells. Accounts of chemical research, 50(3), 487-491.
    Green, M. A., Ho-Baillie, A., & Snaith, H. J. (2014). The emergence of perovskite solar cells. Nature Photonics, 8(7), 506-514.
    Gurunathan, S., Han, J. W., Eppakayala, V., & Kim, J.-H. (2013). Microbial reduction of graphene oxide by Escherichia coli: a green chemistry approach. Colloids and Surfaces B: Biointerfaces, 102, 772-777.
    Haegel, N. M., Margolis, R., Buonassisi, T., Feldman, D., Froitzheim, A., Garabedian, R., Green, M., Glunz, S., Henning, H.-M., & Holder, B. (2017). Terawatt-scale photovoltaics: Trajectories and challenges. Science, 356(6334), 141-143.
    Hammarström, L., & Hammes-Schiffer, S. (2009). Artificial photosynthesis and solar fuels. Accounts of chemical research, 42(12), 1859-1860.
    Han, Y., Meyer, S., Dkhissi, Y., Weber, K., Pringle, J. M., Bach, U., Spiccia, L., & Cheng, Y.-B. (2015). Degradation observations of encapsulated planar CH 3 NH 3 PbI 3 perovskite solar cells at high temperatures and humidity. Journal of Materials Chemistry A, 3(15), 8139-8147.
    Haschke, J., Seif, J. P., Riesen, Y., Tomasi, A., Cattin, J., Tous, L., Choulat, P., Aleman, M., Cornagliotti, E., & Uruena, A. (2017). The impact of silicon solar cell architecture and cell interconnection on energy yield in hot & sunny climates. Energy & Environmental Science, 10(5), 1196-1206.
    Heo, J. H., Im, S. H., Noh, J. H., Mandal, T. N., Lim, C.-S., Chang, J. A., Lee, Y. H., Kim, H.-j., Sarkar, A., & Nazeeruddin, M. K. (2013). Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors. Nature Photonics, 7(6), 486-491.
    Higgins, D., Zamani, P., Yu, A., & Chen, Z. (2016). The application of graphene and its composites in oxygen reduction electrocatalysis: a perspective and review of recent progress. Energy & Environmental Science, 9(2), 357-390.
    Ho, P. H., Liou, Y. T., Chuang, C. H., Lin, S. W., Tseng, C. Y., Wang, D. Y., Chen, C. C., Hung, W. Y., Wen, C. Y., & Chen, C. W. (2015). Self‐crack‐filled graphene films by metallic nanoparticles for high‐performance graphene heterojunction solar cells. Advanced Materials, 27(10), 1724-1729.
    Hodes, G. (2013). Perovskite-based solar cells. Science, 342(6156), 317-318.
    Hong, Y., Wang, Z., & Jin, X. (2013). Sulfuric acid intercalated graphite oxide for graphene preparation. Scientific reports, 3, 3439.
    Huang, J., Yu, H., Dai, A., Wei, Y., & Kang, L. (2017). Drylands face potential threat under 2 [thinsp][deg] C global warming target. Nature Climate Change, 7(6), 417-422.
    Hwang, K., Jung, Y. S., Heo, Y. J., Scholes, F. H., Watkins, S. E., Subbiah, J., Jones, D. J., Kim, D. Y., & Vak, D. (2015). Toward Large Scale Roll‐to‐Roll Production of Fully Printed Perovskite Solar Cells. Advanced Materials, 27(7), 1241-1247.
    Im, J.-H., Jang, I.-H., Pellet, N., Grätzel, M., & Park, N.-G. (2014). Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells. Nature nanotechnology, 9(11), 927-932.
    Im, J.-H., Lee, C.-R., Lee, J.-W., Park, S.-W., & Park, N.-G. (2011). 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale, 3(10), 4088-4093.
    Jeon, N. J., Noh, J. H., Kim, Y. C., Yang, W. S., Ryu, S., & Seok, S. I. (2014). Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nature materials, 13(9), 897-903.
    Jung, H. S., & Park, N. G. (2015). Perovskite solar cells: from materials to devices. small, 11(1), 10-25.
    Kavan, L., Liska, P., Zakeeruddin, S. M., & Grätzel, M. (2016). Low-temperature Fabrication of Highly-Efficient, Optically-Transparent (FTO-free) Graphene Cathode for Co-Mediated Dye-Sensitized Solar Cells with Acetonitrile-free Electrolyte Solution. Electrochimica Acta, 195, 34-42.
    Kim, H.-S., Kumar, M. D., Kim, H., & Kim, J. (2016). Increased spectral sensitivity of Si photodetector by surface plasmon effect of Ag nanowires. Infrared Physics & Technology, 76, 621-625.
    Kim, H.-S., Lee, C.-R., Im, J.-H., Lee, K.-B., Moehl, T., Marchioro, A., Moon, S.-J., Humphry-Baker, R., Yum, J.-H., & Moser, J. E. (2012). Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Scientific reports, 2, 591.
    Knutson, J. L., Martin, J. D., & Mitzi, D. B. (2005). Tuning the band gap in hybrid tin iodide perovskite semiconductors using structural templating. Inorganic chemistry, 44(13), 4699-4705.
    Kojima, A., Teshima, K., Shirai, Y., & Miyasaka, T. (2009). Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the American Chemical Society, 131(17), 6050-6051.
    Kondziella, H., & Bruckner, T. (2016). Flexibility requirements of renewable energy based electricity systems–a review of research results and methodologies. Renewable and Sustainable Energy Reviews, 53, 10-22.
    Lee, M. M., Teuscher, J., Miyasaka, T., Murakami, T. N., & Snaith, H. J. (2012). Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science, 338(6107), 643-647.
    Li, C., Lu, X., Ding, W., Feng, L., Gao, Y., & Guo, Z. (2008). Formability of ABX3 (X= F, Cl, Br, I) Halide Perovskites. Acta Crystallographica Section B: Structural Science, 64(6), 702-707.
    Li, G., Tan, Z.-K., Di, D., Lai, M. L., Jiang, L., Lim, J. H.-W., Friend, R. H., & Greenham, N. C. (2015). Efficient light-emitting diodes based on nanocrystalline perovskite in a dielectric polymer matrix. Nano letters, 15(4), 2640-2644.
    Li, S.-S., Tu, K.-H., Lin, C.-C., Chen, C.-W., & Chhowalla, M. (2010). Solution-processable graphene oxide as an efficient hole transport layer in polymer solar cells. ACS nano, 4(6), 3169-3174.
    Li, W., Fan, J., Li, J., Mai, Y., & Wang, L. (2015). Controllable grain morphology of perovskite absorber film by molecular self-assembly toward efficient solar cell exceeding 17%. Journal of the American Chemical Society, 137(32), 10399-10405.
    Li, X., Dar, M. I., Yi, C., Luo, J., Tschumi, M., Zakeeruddin, S. M., Nazeeruddin, M. K., Han, H., & Grätzel, M. (2015). Improved performance and stability of perovskite solar cells by crystal crosslinking with alkylphosphonic acid ω-ammonium chlorides. Nature chemistry, 7(9), 703-711.
    Liang, P. W., Liao, C. Y., Chueh, C. C., Zuo, F., Williams, S. T., Xin, X. K., Lin, J., & Jen, A. K. Y. (2014). Additive enhanced crystallization of solution‐processed perovskite for highly efficient planar‐heterojunction solar cells. Advanced Materials, 26(22), 3748-3754.
    Liu, D., & Kelly, T. L. (2014). Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques. Nature Photonics, 8(2), 133-138.
    Liu, J., Gao, C., He, X., Ye, Q., Ouyang, L., Zhuang, D., Liao, C., Mei, J., & Lau, W. (2015). Improved crystallization of perovskite films by optimized solvent annealing for high efficiency solar cell. ACS applied materials & interfaces, 7(43), 24008-24015.
    Liu, L., You, F., Zheng, Q., Mo, B., Zeng, B., Wang, H., Zhang, X., & Wei, B. (2017). Enhanced performance of ultraviolet organic light‐emitting diode by using graphene oxide and MoO3 dual hole injection layer. physica status solidi (c), 14(1-2).
    Liu, M., Johnston, M. B., & Snaith, H. J. (2013). Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature, 501(7467), 395-398.
    Liu, T., Chen, K., Hu, Q., Zhu, R., & Gong, Q. (2016). Inverted Perovskite Solar Cells: Progresses and Perspectives. Advanced Energy Materials, 6(17).
    Liu, Z., Shi, T., Tang, Z., Sun, B., & Liao, G. (2016). Using a low-temperature carbon electrode for preparing hole-conductor-free perovskite heterojunction solar cells under high relative humidity. Nanoscale, 8(13), 7017-7023.
    Malik, S., Vijayaraghavan, A., Erni, R., Ariga, K., Khalakhan, I., & Hill, J. P. (2010). High purity graphenes prepared by a chemical intercalation method. Nanoscale, 2(10), 2139-2143.
    Mao, S., Pu, H., & Chen, J. (2012). Graphene oxide and its reduction: modeling and experimental progress. Rsc Advances, 2(7), 2643-2662.
    Marinova, N., Valero, S., & Delgado, J. L. (2017). Organic and perovskite solar cells: Working principles, materials and interfaces. Journal of colloid and interface science, 488, 373-389.
    Mariotti, D., Belmonte, T., Benedikt, J., Velusamy, T., Jain, G., & Švrček, V. (2016). Low‐Temperature Atmospheric Pressure Plasma Processes for “Green” Third Generation Photovoltaics. Plasma Processes and Polymers, 13(1), 70-90.
    Mei, A., Li, X., Liu, L., Ku, Z., Liu, T., Rong, Y., Xu, M., Hu, M., Chen, J., & Yang, Y. (2014). A hole-conductor–free, fully printable mesoscopic perovskite solar cell with high stability. Science, 345(6194), 295-298.
    Mitzi, D. B., Gunawan, O., Todorov, T. K., Wang, K., & Guha, S. (2011). The path towards a high-performance solution-processed kesterite solar cell. Solar Energy Materials and Solar Cells, 95(6), 1421-1436.
    Muthoosamy, K., Bai, R. G., Abubakar, I. B., Sudheer, S. M., Lim, H. N., Loh, H.-S., Huang, N. M., Chia, C. H., & Manickam, S. (2015). Exceedingly biocompatible and thin-layered reduced graphene oxide nanosheets using an eco-friendly mushroom extract strategy. International journal of nanomedicine, 10, 1505.
    Nakamura, M., Kagawa, F., Tanigaki, T., Park, H., Matsuda, T., Shindo, D., Tokura, Y., & Kawasaki, M. (2016). Spontaneous polarization and bulk photovoltaic effect driven by polar discontinuity in LaFeO 3/SrTiO 3 heterojunctions. Physical Review Letters, 116(15), 156801.
    Niu, G., Guo, X., & Wang, L. (2015). Review of recent progress in chemical stability of perovskite solar cells. Journal of Materials Chemistry A, 3(17), 8970-8980.
    Noh, J. H., Im, S. H., Heo, J. H., Mandal, T. N., & Seok, S. I. (2013). Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells. Nano letters, 13(4), 1764-1769.
    Notley, S. M. (2012). Highly concentrated aqueous suspensions of graphene through ultrasonic exfoliation with continuous surfactant addition. Langmuir, 28(40), 14110-14113.
    Oudemans-van Straaten, H. M., Spoelstra-de Man, A. M., & de Waard, M. C. (2014). Vitamin C revisited. Critical Care, 18(4), 460.
    Palma, A. L., Cinà, L., Pescetelli, S., Agresti, A., Raggio, M., Paolesse, R., Bonaccorso, F., & Di Carlo, A. (2016). Reduced graphene oxide as efficient and stable hole transporting material in mesoscopic perovskite solar cells. Nano Energy, 22, 349-360.
    Park, N.-G. (2015). Perovskite solar cells: an emerging photovoltaic technology. Materials Today, 18(2), 65-72.
    Paternoster, G., Zanuccoli, M., Bellutti, P., Ferrario, L., Ficorella, F., Fiegna, C., Magnone, P., Mattedi, F., & Sangiorgi, E. (2015). Fabrication, characterization and modeling of a silicon solar cell optimized for concentrated photovoltaic applications. Solar Energy Materials and Solar Cells, 134, 407-416.
    Peng, H., Meng, L., Niu, L., & Lu, Q. (2012). Simultaneous reduction and surface functionalization of graphene oxide by natural cellulose with the assistance of the ionic liquid. The Journal of Physical Chemistry C, 116(30), 16294-16299.
    Perera, S. D., Mariano, R. G., Nijem, N., Chabal, Y., Ferraris, J. P., & Balkus, K. J. (2012). Alkaline deoxygenated graphene oxide for supercapacitor applications: An effective green alternative for chemically reduced graphene. Journal of Power Sources, 215, 1-10.
    Qin, P., Tanaka, S., Ito, S., Tetreault, N., Manabe, K., Nishino, H., Nazeeruddin, M. K., & Grätzel, M. (2014). Inorganic hole conductor-based lead halide perovskite solar cells with 12.4% conversion efficiency. Nature communications, 5.
    Søndergaard, R. R., Hösel, M., & Krebs, F. C. (2013). Roll‐to‐Roll fabrication of large area functional organic materials. Journal of Polymer Science Part B: Polymer Physics, 51(1), 16-34.
    Schniepp, H. C., Li, J.-L., McAllister, M. J., Sai, H., Herrera-Alonso, M., Adamson, D. H., Prud'homme, R. K., Car, R., Saville, D. A., & Aksay, I. A. (2006). Functionalized single graphene sheets derived from splitting graphite oxide. The Journal of Physical Chemistry B, 110(17), 8535-8539.
    Screen, J. A., & Simmonds, I. (2014). Amplified mid-latitude planetary waves favour particular regional weather extremes. Nature Climate Change, 4(8), 704-709.
    Seidl, R., Thom, D., Kautz, M., Martin-Benito, D., Peltoniemi, M., Vacchiano, G., Wild, J., Ascoli, D., Petr, M., & Honkaniemi, J. (2017). Forest disturbances under climate change. Nature Climate Change, 7(6), 395-402.
    Shen, X., Jiang, L., Ji, Z., Wu, J., Zhou, H., & Zhu, G. (2011). Stable aqueous dispersions of graphene prepared with hexamethylenetetramine as a reductant. Journal of colloid and interface science, 354(2), 493-497.
    Shin, H. J., Kim, K. K., Benayad, A., Yoon, S. M., Park, H. K., Jung, I. S., Jin, M. H., Jeong, H. K., Kim, J. M., & Choi, J. Y. (2009). Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance. Advanced Functional Materials, 19(12), 1987-1992.
    Siddaiah, R., & Saini, R. (2016). A review on planning, configurations, modeling and optimization techniques of hybrid renewable energy systems for off grid applications. Renewable and Sustainable Energy Reviews, 58, 376-396.
    Smestad, G. P., & Gratzel, M. (1998). Demonstrating electron transfer and nanotechnology: a natural dye-sensitized nanocrystalline energy converter. J. Chem. Educ, 75(6), 752.
    Smith, I. C., Hoke, E. T., Solis‐Ibarra, D., McGehee, M. D., & Karunadasa, H. I. (2014). A layered hybrid perovskite solar‐cell absorber with enhanced moisture stability. Angewandte Chemie, 126(42), 11414-11417.
    Sobon, G., Sotor, J., Jagiello, J., Kozinski, R., Zdrojek, M., Holdynski, M., Paletko, P., Boguslawski, J., Lipinska, L., & Abramski, K. M. (2012). Graphene oxide vs. reduced graphene oxide as saturable absorbers for Er-doped passively mode-locked fiber laser. Optics express, 20(17), 19463-19473.
    Stankovich, S., Dikin, D. A., Piner, R. D., Kohlhaas, K. A., Kleinhammes, A., Jia, Y., Wu, Y., Nguyen, S. T., & Ruoff, R. S. (2007). Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon, 45(7), 1558-1565.
    Subbiah, A. S., Halder, A., Ghosh, S., Mahuli, N., Hodes, G., & Sarkar, S. K. (2014). Inorganic hole conducting layers for perovskite-based solar cells. The journal of physical chemistry letters, 5(10), 1748-1753.
    Sun, J., Xie, X., Bi, H., Jia, H., Zhu, C., Wan, N., Huang, J., Nie, M., Li, D., & Sun, L. (2017). Solution-assisted ultrafast transfer of graphene-based thin films for solar cells and humidity sensors. Nanotechnology, 28(13), 134004.
    Sun, Z., Yan, Z., Yao, J., Beitler, E., Zhu, Y., & Tour, J. M. (2010). Growth of graphene from solid carbon sources. Nature, 468(7323), 549-552.
    Suzuka, M., Hayashi, N., Sekiguchi, T., Sumioka, K., Takata, M., Hayo, N., Ikeda, H., Oyaizu, K., & Nishide, H. (2016). A quasi-solid state dssc with 10.1% efficiency through molecular design of the charge-separation and-transport. Scientific reports, 6, 28022.
    Tan, Z.-K., Moghaddam, R. S., Lai, M. L., Docampo, P., Higler, R., Deschler, F., Price, M., Sadhanala, A., Pazos, L. M., & Credgington, D. (2014). Bright light-emitting diodes based on organometal halide perovskite. Nature nanotechnology, 9(9), 687-692.
    Thornton, P. E., Calvin, K., Jones, A. D., Di Vittorio, A. V., Bond-Lamberty, B., Chini, L., Shi, X., Mao, J., Collins, W. D., & Edmonds, J. (2017). Biospheric feedback effects in a synchronously coupled model of human and Earth systems. Nature Climate Change.
    Tian, D., Yong, G., Dai, Y., Yan, X., & Liu, S. (2009). CO oxidation catalyzed by Ag/SBA-15 catalysts prepared via in situ reduction: the influence of reducing agents. Catalysis letters, 130(1-2), 211-216.
    Tiep, N. H., Ku, Z., & Fan, H. J. (2016). Recent advances in improving the stability of perovskite solar cells. Advanced Energy Materials, 6(3).
    Todorov, T., Gunawan, O., & Guha, S. (2016). A road towards 25% efficiency and beyond: perovskite tandem solar cells. Molecular Systems Design & Engineering, 1(4), 370-376.
    Tsai, H., Nie, W., Lin, Y. H., Blancon, J. C., Tretiak, S., Even, J., Gupta, G., Ajayan, P. M., & Mohite, A. D. (2017). Effect of Precursor Solution Aging on the Crystallinity and Photovoltaic Performance of Perovskite Solar Cells. Advanced Energy Materials.
    Tung, V. C., Chen, L.-M., Allen, M. J., Wassei, J. K., Nelson, K., Kaner, R. B., & Yang, Y. (2009). Low-temperature solution processing of graphene− carbon nanotube hybrid materials for high-performance transparent conductors. Nano letters, 9(5), 1949-1955.
    Wang, F., Young, S. M., Zheng, F., Grinberg, I., & Rappe, A. M. (2016). Substantial bulk photovoltaic effect enhancement via nanolayering. Nature communications, 7.
    Wang, J. T.-W., Ball, J. M., Barea, E. M., Abate, A., Alexander-Webber, J. A., Huang, J., Saliba, M., Mora-Sero, I., Bisquert, J., & Snaith, H. J. (2013). Low-temperature processed electron collection layers of graphene/TiO2 nanocomposites in thin film perovskite solar cells. Nano letters, 14(2), 724-730.
    Weber, D. (1978). CH3NH3PbX3, ein Pb (II)-System mit kubischer Perowskitstruktur/CH3NH3PbX3, a Pb (II)-System with Cubic Perovskite Structure. Zeitschrift für Naturforschung B, 33(12), 1443-1445.
    Wu, N., She, X., Yang, D., Wu, X., Su, F., & Chen, Y. (2012). Synthesis of network reduced graphene oxide in polystyrene matrix by a two-step reduction method for superior conductivity of the composite. Journal of Materials Chemistry, 22(33), 17254-17261.
    Wu, Y., Islam, A., Yang, X., Qin, C., Liu, J., Zhang, K., Peng, W., & Han, L. (2014). Retarding the crystallization of PbI 2 for highly reproducible planar-structured perovskite solar cells via sequential deposition. Energy & Environmental Science, 7(9), 2934-2938.
    Xiao, Z., Yuan, Y., Shao, Y., Wang, Q., Dong, Q., Bi, C., Sharma, P., Gruverman, A., & Huang, J. (2015). Giant switchable photovoltaic effect in organometal trihalide perovskite devices. Nature materials, 14(2), 193-198.
    Xie, F. X., Su, H., Mao, J., Wong, K. S., & Choy, W. C. (2016). Evolution of Diffusion Length and Trap State Induced by Chloride in Perovskite Solar Cell. The Journal of Physical Chemistry C, 120(38), 21248-21253.
    Xing, G., Mathews, N., Lim, S. S., Yantara, N., Liu, X., Sabba, D., Grätzel, M., Mhaisalkar, S., & Sum, T. C. (2014). Low-temperature solution-processed wavelength-tunable perovskites for lasing. Nature materials, 13(5), 476-480.
    Xu, B., Gabrielsson, E., Safdari, M., Cheng, M., Hua, Y., Tian, H., Gardner, J. M., Kloo, L., & Sun, L. (2015). 1, 1, 2, 2‐Tetrachloroethane (TeCA) as a Solvent Additive for Organic Hole Transport Materials and Its Application in Highly Efficient Solid‐State Dye‐Sensitized Solar Cells. Advanced Energy Materials, 5(10).
    Yang, N., Zhai, J., Wang, D., Chen, Y., & Jiang, L. (2010). Two-dimensional graphene bridges enhanced photoinduced charge transport in dye-sensitized solar cells. ACS nano, 4(2), 887-894.
    Yang, Y., & You, J. (2017). Make perovskite solar cells stable. Nature, 544(7649), 155.
    Yaqoot, M., Diwan, P., & Kandpal, T. C. (2016). Review of barriers to the dissemination of decentralized renewable energy systems. Renewable and Sustainable Energy Reviews, 58, 477-490.
    Yeo, J.-S., Yun, J.-M., Jung, Y.-S., Kim, D.-Y., Noh, Y.-J., Kim, S.-S., & Na, S.-I. (2014). Sulfonic acid-functionalized, reduced graphene oxide as an advanced interfacial material leading to donor polymer-independent high-performance polymer solar cells. Journal of Materials Chemistry A, 2(2), 292-298.
    Yin, W.-J., Yang, J.-H., Kang, J., Yan, Y., & Wei, S.-H. (2015). Halide perovskite materials for solar cells: a theoretical review. Journal of Materials Chemistry A, 3(17), 8926-8942.
    Yin, Z., Zhu, J., He, Q., Cao, X., Tan, C., Chen, H., Yan, Q., & Zhang, H. (2014). Graphene‐Based Materials for Solar Cell Applications. Advanced Energy Materials, 4(1).
    You, J., Meng, L., Song, T.-B., Guo, T.-F., Yang, Y. M., Chang, W.-H., Hong, Z., Chen, H., Zhou, H., & Chen, Q. (2016). Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers. Nature nanotechnology, 11(1), 75-81.
    Yun, J. M., Yeo, J. S., Kim, J., Jeong, H. G., Kim, D. Y., Noh, Y. J., Kim, S. S., Ku, B. C., & Na, S. I. (2011). Solution‐Processable Reduced Graphene Oxide as a Novel Alternative to PEDOT: PSS Hole Transport Layers for Highly Efficient and Stable Polymer Solar Cells. Advanced Materials, 23(42), 4923-4928.
    Zhang, F., Yang, X., Wang, H., Cheng, M., Zhao, J., & Sun, L. (2014). Structure engineering of hole–conductor free perovskite-based solar cells with low-temperature-processed commercial carbon paste as cathode. ACS applied materials & interfaces, 6(18), 16140-16146.
    Zhang, H., Liang, C., Zhao, Y., Sun, M., Liu, H., Liang, J., Li, D., Zhang, F., & He, Z. (2015). Dynamic interface charge governing the current–voltage hysteresis in perovskite solar cells. Physical Chemistry Chemical Physics, 17(15), 9613-9618.
    Zhang, N., Guo, Y., Yin, X., He, M., & Zou, X. (2016). Spongy carbon film deposited on a separated substrate as counter electrode for perovskite-based solar cell. Materials Letters, 182, 248-252.
    Zhang, W. (2016). Solution processing of high-quality metal halide perovskite thin films for photovoltaic and optoelectronic applications.
    Zhou, H., Chen, Q., Li, G., Luo, S., Song, T.-b., Duan, H.-S., Hong, Z., You, J., Liu, Y., & Yang, Y. (2014). Interface engineering of highly efficient perovskite solar cells. Science, 345(6196), 542-546.
    Zhu, C., Guo, S., Fang, Y., & Dong, S. (2010). Reducing sugar: new functional molecules for the green synthesis of graphene nanosheets. ACS nano, 4(4), 2429-2437.
    Zuo, C., & Ding, L. (2014). An 80.11% FF record achieved for perovskite solar cells by using the NH 4 Cl additive. Nanoscale, 6(17), 9935-9938.

    無法下載圖示 校內:2022-06-26公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE