| 研究生: |
陳妍孜 Chen, Yen-Tzu |
|---|---|
| 論文名稱: |
二項與波氏分配之等價檢定 Testing the Equivalence of Binomial and Poisson Distributions |
| 指導教授: |
溫敏杰
Wen, Miin-Jye |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 統計學系 Department of Statistics |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 英文 |
| 論文頁數: | 79 |
| 中文關鍵詞: | 無差異區間 、全距檢定 、最保守均數組合 、水準與檢定力 |
| 外文關鍵詞: | Range test, Least favorable configuration, Indifference zone, Level and power |
| 相關次數: | 點閱:142 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
全距檢定法是在檢定二項分配比例與波氏分配參數等價假設,相對於對立假設則為不等價。為了消除變異數未知情況,使用了二項及波氏隨機變數兩者的變異數穩定轉換,在最保守參數均數組合下,關於這些假設檢定的最大水準和最小檢定力趨近於常態定理。在給予水準與檢定力下,實驗的臨界值和所須的樣本數可以被同時決定,而電腦程式也在此目的下形成。
A range test is proposed for testing the hypothesis of equivalence of binomial proportions and Poisson parameters, respectively against the alternative hypothesis of inequivalence. Variance stabilization
transformations for both binomial and Poisson random variables are used to remove unknown parameters in the variances. Both the maximum level and the minimum power of the proposed test associated with these hypotheses can be approximated by normal theory at the corresponding least favorable configurations of parameters. For a given level and a given power, the critical value and the required
sample size for an experiment can be simultaneously determined, and a computer program is developed for such purpose.
Bau, J. J., Chen, H. J. and Xiong, M. (1993). Percentage Point of the Studentized Range Test for Dispersion of Normal Means. J. Statist. Comput. Simul., Vol. 44, 149-263.
Berger, J. O. (1985). Statistical Decision Theory, 2nd edition, Springer-Verlag, N.Y.
Chen, H. J., Xiong, M. and Lam, K. (1993). Range Tests for the Dispersion of Several Location Parameters. Journal of Statistical Planning and Inference, 36, 15-25.
Chow, S. C. and Liu, J. P. (1992). Design and Analysis of Bioavailability and Bioequivalence Studies, New York: Marcel Dekker.
Hayter, A. J. and Liu, W. (1990). The Power Function of the Studentized Range Test. The Annals of Statistics, 18, 465-468.
Lehmann, E. L. (1986). Testing Statistical Hypothesis, 2nd edition, Wiley, N. Y.
Wen, M. J. and Chen, H. J. (2005). A Studentized Range Test for the Equivalency of Normal Means under Heteroscedasticity. Computational Statistics and Data Analysis. To appear.
Wen, M. J., Chen, H. J. and Chuang, C. J. (2005). The Level and Power of a Studentized Range Test for Testing the Dispersion of Normal Mean. Technical Report No. 68, July 2005, Department of Statistics, National Cheng Kung University, Tainan, Taiwan. This manuscript can be viewed on http://www.stat.ncku.edu.tw/faculty/mjwen/MjWenTR.htm (TR68DispersionofNormalMean940707).