| 研究生: |
程世州 Chen, Shi-Zhou |
|---|---|
| 論文名稱: |
在乙太被動光網路中以預測光纖線路終端分配頻寬配置佇列回報欄位的主動式排程演算法 Active Scheduling with Predictive Queue Report in Ethernet Passive Optical Networks |
| 指導教授: |
蘇銓清
Sue, Chuan-Ching |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 資訊工程學系 Department of Computer Science and Information Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 71 |
| 中文關鍵詞: | 被動乙太光纖網路 、頻寬分配 、未使用溝槽剩餘頻寬 、交錯式預測演算法 |
| 外文關鍵詞: | Ethernet Passive Optical Network, Dynamic bandwidth allocation, Unused Slot Remainder, interleave predictive algorithm |
| 相關次數: | 點閱:71 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在被動乙太光纖網路(Ethernet passive optical network, EPON)上未使用溝槽剩餘頻寬(Unused slot remainder, USR)是一個影響效能的重要議題。未使用溝槽剩餘頻寬是由於OLT分配的上傳頻寬因乙太封包的不可切割性,造成ONU上傳封包時,仍有不足以上傳一個封包的剩餘上傳頻寬,這些剩餘頻寬,因為無法被其他ONU使用,導致頻寬利用度下降及封包延遲上升的問題。針對未使用溝槽剩餘頻寬,目前文獻提出可使OLT分配頻寬必定可被ONU完整使用的改善方法來消除未使用溝槽剩餘頻寬。依照ONU使用REPORT訊息的方式,這些方法可分為Single queue report(SQR)與Multiple Queue Reports(MQR)兩種機制。
SQR機制為ONU僅使用REPORT訊息內一個Queue Report欄位記錄需求頻寬上傳給OLT,此需求頻寬一般是根據最大可上傳頻寬的大小來決定,有可能會導致OLT只能分配Queue Report欄位所記錄的需求頻寬,無法分配多餘的頻寬,來提升頻寬利用度。MQR機制則是ONU使用REPORT訊息內多個Queue Report欄位來紀錄不同的需求頻寬上傳給OLT。MQR機制無法只使用最大可上傳頻寬的大小來決定多個Queue Report欄位的紀錄值,而改用門檻值與門檻差值來決定每個Queue Report欄位所記錄的需求頻寬,使得OLT進行頻寬分配時,可選擇所記錄的需求頻寬較大的Queue Report欄位。但是因為無法決定最佳的門檻值與門檻差值,MQR機制仍會導致OLT無法分配多餘的頻寬,來提升頻寬利用度。因此,不同於找尋最佳的門檻值與門檻差值,本論文提出一個基於交錯式預測演算法預測OLT分配頻寬進而配置多個佇列回報(Queue Report)欄位內容的Active scheduling with predictive queue report(ASPQR)演算法。模擬結果顯示ASPQR演算法相較於MQR機制可讓ONU獲得更多的上傳頻寬,降低平均封包延遲,並且進一步降低封包遺失率,其封包遺失率改善幅度相對於SQR機制可達50%。
The Unused Slot Remainder (USR) problem is an important issue for network performance in the Ethernet Passive Optical Network (EPON). Due to the inseparability of an ethernet packet, if the size of a remainder is insufficient to transmit any packet in the corresponding ONU’s (Optical Network Unit’s) buffer, neither the ONU nor other ONUs in the EPON system can use the remainder to transmit any packet. The USR problem is seen as a waste of bandwidth that will decrease the bandwidth utilization and indirectly increase packet delay. Many previous works have proposed bandwidth allocation schemes to prevent the USR problem. According to the usage of a queue report field in the REPORT message, these proposed schemes can be classified into two categories: a single queue report (SQR) and a multiple queue report (MQR).
In the SQR scheme category, the ONU uses a single queue report field to record the required bandwidth. The required bandwidth is decided according to the maximum transmission window. The network utilization can’t promote because the allocated bandwidth is limited by the size of the maximum transmission window. On the other hand, an ONU uses a multiple queue report field in a single REPORT message to record the required bandwidth in the MQR scheme category. To decide the value of each queue report, an MQR scheme adopts a threshold and a threshold difference. After the OLT (Optical Line Terminal) performs a DBA (Dynamic bandwidth allocation) computation, it will choose a required bandwidth that is as large as possible and grant the corresponding bandwidth to each ONU. However, the actual grant bandwidth is unequal to the optimal grant bandwidth. Thus, the bandwidth utilization still can be improved. To improve the usage of the queue report, we propose an interleave predictive algorithm-based active scheduling with a predictive queue report algorithm (ASPQR) to predict the grant bandwidth from the OLT, and in this paper, the value of each queue report field is decided according to the prediction result. The simulation result shows that the ASPQR grants more bandwidth to ONUs as compared to other MQR schemes. Therefore, the average packet delay and packet loss ratios are improved. The improvement is as high as 50% in terms of the packet loss ratio.
[1]“FSAN in relation to other standard bodies,” FSAN. [Online]. Available: http://www.fsanweb.org/
[2]D. Law, “IEEE 802.3 CSMA/CD (ETHERNET),” [Online]. Available: http://www.ieee802.org/3/
[3]G. Kramer, “Discrete event simulation library,” [Online]. Available: http://wwwcsif.cs.ucdavis.edu/~kramer/code/desl.html.
[4]W. Willinger, M. S. Taqqu, R. Sherman, and D. V. Wilson, “Self-similarity through high variability: statistical analysis of ethernet LAN traffic at the source level,” Proc. ACM Sigcomm, pp. 100-113, 1995.
[5]S. Haykin,“Adaptive Filter Theory, 3rd ed,” Prentice-Hall, 1996
[6]S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss, “An Architecture for Differentiated Services,” IETF, RFC 2475, pp. 1-36, 1998.
[7]Y. Shu, Z. Jin, J. Wang, and Oliver W. W. Yang, “Prediction-based admission control using FARIMA models,” ICC 2000, pp.1325-1329, 2000.
[8]A. Karasaridis and D. Hatzinakos, “Network heavy traffic modeling using alpha-stable self-similar processes,” IEEE Trans. Communications, Vol. 49, No.7, pp. 1203-1214, 2001.
[9]G. Kramer and G. Pesavento, “Ethernet PON: building a next-generation optical access network,” IEEE Communications Magazine, Vol. 40, pp. 66-73, 2002.
[10]G. Kramer and B. Mukherjee, “Supporting differentiated classes of service in ethernet passive optical networks,” Journal of Optical Networking, pp. 280-298, 2002.
[11]D. Nikolova, B. Van Houdt, and C. L. Blondia, “Dynamic bandwidth allocation algorithms in EPON: a simulation study,” Optical Networking and Communications Conference, pp. 1-12, 2003.
[12]“IEEE Standard for Information technology-Telecommunications and information exchange between systems- Local and metropolitan area networks- Specific requirements Part 3: Carrier Sense Multiple Access with Collision Detection (CSMA/CD) Access Method and Physical Layer Specifications Amendment: Media Access Control Parameters, Physical Layers, and Management Parameters for Subscriber Access Networks,” IEEE standard 802.3ah-2004, pp. 1-623, 2004.
[13]G. Kramer, A. Banerjee, N. K. Singhal, and B. Mukherjee, S. Dixit, and Y. Ye, “Fair queuing with service envelopes (FQSE): a cousin-fair hierarchical scheduler for subscriber access networks,” IEEE Journal on Selected Areas in Communications, pp. 1497-1513, 2004.
[14]H. Miyoshi, T. Inoue, and K. Yamashita, “QoS-aware dynamic bandwidth allocation scheme in Gigabit-Ethernet passive optical networks,” Communications, IEEE International Conference on, pp. 20-24, 2004.
[15]G. Kramer, “Ethernet passive optical network,” McGraw-Hill, 2005.
[16]Y. Luo, and N. Ansari, “Bandwidth allocation for multiservice access on EPONs,” IEEE Communications Magazine, pp. 16-21, 2005.
[17]Y. Luo and N. Ansari, “Limited Sharing with Traffic Prediction for Dynamic bandwidth allocation and QoS provisioning over ethernet passive optical networks,” Journal of Optical Networks, pp. 561-572, 2005.
[18]G. Kramer, B. Mukherjee, and G. Pesavento, “Interleaved polling with adaptive cycle time (IPACT): a dynamic bandwidth distribution scheme in an optical access network,” Photonic Network Communications, pp. 89-107, 2002.
[19]C. H. Lee, W. V. Sorin, and B. Y. Kim, “Fiber to the home using a PON Infrastructure,” IEEE/OSA Journal Lightwave Technology, pp. 4568-4583, 2006.
[20]H. Naser, and H. T. Mouftah, “A joint-ONU interval-based dynamic scheduling algorithm for Ethernet passive optical networks,” IEEE/ACM Transactions on Networking, pp. 889-899, 2006.
[21]B. Chen, J. Chen, and S. He, “Efficient and fine scheduling algorithm for bandwidth allocation in ethernet passive optical networks.” IEEE Journal of Selected Topics in Quantum Electronics, pp. 653-660, 2006.
[22]C. H. Chen, H. T. Wu, and K. W. Ke, “Predictive credit based dynamic bandwidth allocation mechanisms in ethernet passive optical network,” TENCON. 2006 IEEE Region 10 Conference, pp. 14-17, 2006.
[23]X. Bai, A. Shami, and C. Assi, “On the fairness of dynamic bandwidth allocation schemes in Ethernet passive optical networks,” Computer Communications, pp. 2123-2135, 2006.
[24]F. Wang, D. Li, and Y. Zhao, “Prediction of self-similar traffic and its application in network bandwidth allocation,” International Conference on Wireless Communications, Networking and Mobile Computing, pp.1980-1983, 2007.
[25]J. Y. Zhang, and M. G. Liang, “An efficient USR eliminating mechanism on EPON.” IIHMSP, International Conference on, pp.1469-1472, 2008.
[26]I. S. Hwang, Z. D. Shyu, L. Y. Ke, and C. C. Change, “A novel early DBA mechanism with prediction-based fair excessive bandwidth allocation scheme in EPON,” Computer Communications, pp. 1814-1823, 2008.
[27]Y. Zhu and M. Ma, “IPACT with grant estimation(IPACT-GE) scheme for ethernet passive optical networks,” Journal of Lightwave Technology, pp. 2055-2063, 2008
[28]C. C. Sue, W. N. Sung and H. Y. Chen, “Active scheduling algorithm for intra-ONU dynamic bandwidth allocation in ethernet passive optical networks,” ICUFN, First International Conference on, pp. 240-245, 2009.
[29]P. Wang, S. Y. Zhang, and X. J. Chen, “SFARIMA: A New Network Traffic Prediction Algorithm,” International Conference on Information Science and Engineering, pp.1859-1863, 2009.
[30]I. S. Hwang, Z. D. Shyu, J. Y. Lee and Z. L. Huang, “Two phase bandwidth allocation mechanism with adaptive prediction for differentiated services on EPONs,” Journal of Internet Technology, pp. 163-172, 2009.
[31]B. Skubic, J. Chen J. Ahmed, L. Wosinska, and B. Mukherjee, “A comparison of dynamic bandwidth allocation for EPON, GPON, and next-generation TDM PON,” IEEE Communications Magazine, pp. 40-48, 2009.
[32]S. Dea, V. Singha, H. M. Guptaa, N. Szxena, and A. Roy, “A new predictive dynamic priority scheduling in Ethernet passive optical networks (EPONs),” Optical Switching and Networking, pp. 215-223, 2010.
[33]G. J. Kim, and J. Y. Choi, J. H. Ryou, H. M. Baek, O. S. Lee, H. S. Park, M. Kang, G. J. Kim, and J. H. Yoo, “Cost effective protection architecture to provide diverse protection demands in ethernet passive optical network,” ICCT, International Conference on, pp. 721-724, 2003.
[34]“OMNeT++,” [Online]. Available :http://www.omnetpp.org.
校內:2016-08-11公開