簡易檢索 / 詳目顯示

研究生: 陳昱元
Chen, Yu-Yuan
論文名稱: 探討非質子型離子液體物理化學性質的取代基效應
Investigation of substituent effect on physicochemical properties of aprotic ionic liquids
指導教授: 蘇世剛
Su, Shyu-Gang
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 152
中文關鍵詞: 非質子型離子液體黏度密度導電度擴散係數
外文關鍵詞: aprotic ionic liquids, viscosity, density, conductivity, diffusion coefficient
相關次數: 點閱:75下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗使用酸鹼中和合成17種非質子型離子液體 (aprotic ionic liquids),陽離子的部分以五圓環的吡咯啶 (pyrolidine)、六圓環的吡啶系列 (piperidine)、嗎啉 (morpholine)系列以及甘胺酸系列 (glycine-based)為基礎,分別加入醇基類、醚類以及烷烯類等取代基作為替換,陰離子的部分為(bis(trifluoromethanesulfonyl)amide)。
    我們利用變溫的方式測量非質子型離子液體的黏度、密度、導電度的大小,並探討陰陽離子的結構變化對於整體離子液體的物理性質影響。另外也使用核磁共振(PGSE-NMR)的技術,量測陰陽離子在變溫條件下的擴散係數,經由Nernst-Einstein 方程式計算完全解離的莫爾導電度,並推算各離子液體的解離程度,瞭解非質子型離子液體的聚集現象。針對上述非質子型離子液體的物理性質探討其庫倫靜電力、氫鍵作用力、極性效應及凡得瓦爾力等分子間作用力的影響。
    結果顯示,離子液體的黏度、密度會隨著溫度提升而下降,導電度與擴散係數則隨著溫度的提升而上升,黏度部分主要受到官能基的影響可以分三類,含有氫鍵取代基、極性取代基、非極性取代基,當有氫鍵的形成黏度越大,其次是受極性取代基的偶極-偶極作用力,凡得瓦力則是屬於微弱的作用力,另一個重要的考量因素是環效應影響,環效應造成六圓環離子液體的黏度為五圓環離子液體的1.4~1.7倍,導電度為0.6倍;密度的部分除了上述作用力因素外,還要考量到取代基碳鏈越長,單位體積下的質量會下降,造成密度降低;導電度以及擴散係數的部分,受到黏度效應以及作用力影響,趨勢會與黏度互成反比的走勢,但仍有與預測不符的部分需要進一步討論。
    之後我們利用密度泛函理論B3LYP方法,在6-31G(d)基組上,對17組非質子型離子液體進行理論研究,通過幾何結構最佳化和頻率分析得到電位表面的穩定結構、電荷的分布情況、陰陽離子相互作用的能量,其中以氫鍵取代基的非質子型離子液體為最穩定結構,其次為極性取代基以及非極性取代基非質子型離子液體,並且利用Mulliken電荷分布的變化情況解釋陰、陽離子之間電子轉移以及誘導效應的發生。

    Seventeen aprotic ionic liquids (aPILs) are prepared using acid-base neutralization reaction. These aprotic ionic liquids contain bis(trifluoromethanesufonyl)amide as anion and various oniums as cations. The cations are based on pyrrolidinium, piperidinium, morpholinium, and glycine-based ester with various functional groups.
    In order to realize the structural relationship of cations and anions in ionic liquids, we measured the physicochemical properties, such as density, viscosity, and specific conductivity of these aprotic ionic liquids at variable temperatures. Furthermore, the self-diffusion coefficients of cation and anion in these aprotic ionic liquids were studied using pulsed gradient spin-echo NMR technique. To understand the influence of aggregation, we measured the equivalent conductivity and degree of dissociation by Stokes-Einstein equation. The possible effects of the physicochemical properties are derived from the intermolecular interactions, coulomb interaction, hydrogen bonding, polarizability effects, and van der Waals interactions.
    The results indicate that viscosity, density, specific conductivity, and self-diffusion are different at various temperatures. Viscosity and density of aprotic ionic liquids increase with raising temperature. However, specific conductivity and self-diffusion decrease with raising temperature. The viscosity is influenced by various substituents of cations, various substituents cause different hydrogen-bond effect, polarized bond, and nonpolarized bond of cations. Hydrogen bonding, dipole-dipole, and van der Waals interactions increase viscosity and density of aprotic ionic liquids. The length of the cation side chain also affects the density, longer cation side chain has smaller density. The other important factor is the X-membered rings effect, the viscosity ratio of six-memberd rings: five-membered rings is 1.4~1.7 : 1, and the specific conductivity ratio of six-memberd rings : five-membered rings is 0.6~0.5 : 1. Compare with the tendency of viscosity of aprotic ionic liquids, the results of specific conductivity and self-difussion coefficient of aprotic ionic liquids versus viscosity show inverse ratio.
    These aprotic ionic liquids are investigated with density functional theory at B3LYP/6-31G(d) level. Their electrostatic potential surfaces, optimized geometries, charge distribution, and the interactions between the cation and anion are discussed in detail. Theoretical results indicate that hydrogen-bond substituent of aprotic ionic liquids are more stable than polarized substituent and nonpolarized substituent of aprotic ionic liquids. The induced effect and electron transfer of aprotic ionic liquids are analyzed using the change of Mulliken charge.

    摘要 I Abstract III 致謝 V 目錄 VI 表目錄 IX 圖目錄 XI 第一章 序論 1 1-1 前言 1 1-2 離子液體的定義與種類 4 1-2-1 離子液體的定義 4 1-2-2 離子液體的種類 4 1-3 離子液體的發展 6 1-4 離子液體的特性與應用 8 1-5 研究動機 13 第二章 理論簡介 15 2-1 核磁共振儀 15 2-1-1 核磁共振 Nuclear Magnetic Resonance, NMR 15 2-1-2 核磁共振的歷史背景 16 2-1-3 核磁共振的基本原理 18 2-1-4 遮蔽效應與化學位移 20 2-1-5 核磁共振的弛緩機制 23 2-2 擴散係數 (Diffusion coefficient) 26 2-3 黏度 (Viscosity) 30 2-4 密度 (Density) 31 2-5 導電度 (Conductivity) 31 2-6 理論計算 32 2-6-1 基底(basis set) 33 2-6-2 分裂基底(Split basis set) 33 2-6-3 極化函數(Polarization functions) 34 2-6-4 擴散函數(Diffusion functions) 34 2-6-5 HF 理論方法 35 2-6-6 DFT 理論方法 35 第三章 實驗 39 3-1 實驗藥品 39 3-2 實驗儀器裝置 42 3-3 實驗方法 43 第四章 結果與討論 50 4-1 密度 50 4-2 黏度 56 4-3 導電度 72 4-4 擴散係數 90 4-5 Walden Plot 111 4-6 理論計算 118 第五章 結論 145 參考文獻 150

    (1)Anastas, P. T.; Warne, J. C. Green Chemistry: Theory and Practice; Oxford University, Press: New York, 1998.
    (2)Wasserscheid, P.; Welton, T. Ionic Liquids in Synthesis; Wiley-VCH: Weinheim, 2008.
    (3)Baker, G. A.; Baker, S. N.; Pandey, S.; Bright, F. V. Analyst 2005, 130, 800.(4)Sugden, S.; Wilkins, H. J. Chem. Soc. 1929, 1291.
    (5)Hurley, F. H.; Wier, T. P. Journal of the Electrochemical Society 1951, 98, 203.
    (6)Carpio, R. A.; King, L. A.; Lindstrom, R. E.; Nardi, J. C.; Hussey, C. L. Journal of the Electrochemical Society 1979, 126, 1644.
    (7)Wilkes, J. S.; Levisky, J. A.; Wilson, R. A.; Hussey, C. L. Inorganic Chemistry 1982, 21, 1263.
    (8)Wilkes, J. S.; Zaworotko, M. J. Journal of the Chemical Society, Chemical Communications 1992, 965.
    (9)Bonhote, P.; Dias, A. P.; Papageorgiou, N.; Kalyanasundaram, K.; Gratzel, M. Inorganic Chemistry 1996, 35, 1168.
    (10)Yoshizawa, M.; Ohno, H. Chemical Communications 2004, 1828.
    (11)Hirao, M.; Sugimoto, H.; Ohno, H. Journal of the Electrochemical Society 2000, 147, 4168.
    (12)Freemantle, M. An Introduction to Ionic Liquids Royal Society of chemistry, 2010.
    (13)Nazeeruddin, M. K.; De Angelis, F.; Fantacci, S.; Selloni, A.; Viscardi, G.; Liska, P.; Ito, S.; Bessho, T.; Gratzel, M. Journal of the American Chemical Society 2005, 127, 16835.
    (14)Wang, P.; Zakeeruddin, S. M.; Moser, J. E.; Gratzel, M. Journal of Physical Chemistry B 2003, 107, 13280.
    (15)Kubo, W.; Kitamura, T.; Hanabusa, K.; Wada, Y.; Yanagida, S. Chemical Communications 2002, 374.
    (16)Wang, P.; Zakeeruddin, S. M.; Comte, P.; Exnar, I.; Gratzel, M. Journal of the American Chemical Society 2003, 125, 1166.
    (17)Wang, P.; Zakeeruddin, S. M.; Humphry-Baker, R.; Gratzel, M. Chemistry of Materials 2004, 16, 2694.
    (18)Kuang, D. B.; Wang, P.; Ito, S.; Zakeeruddin, S. M.; Gratzel, M. Journal of the American Chemical Society 2006, 128, 7732.
    (19)Wang, P.; Klein, C.; Moser, J. E.; Humphry-Baker, R.; Cevey-Ha, N. L.; Charvet, R.; Comte, P.; Zakeeruddin, S. M.; Gratzel, M. Journal of Physical Chemistry B 2004, 108, 17553.
    (20)Kawano, R.; Matsui, H.; Matsuyama, C.; Sato, A.; Susan, M.; Tanabe, N.; Watanabe, M. Journal of Photochemistry and Photobiology A: Chemistry 2004, 164, 87.
    (21)Paulsson, H.; Hagfeldt, A.; Kloo, L. Journal of Physical Chemistry B 2003, 107, 13665.
    (22)Wang, P.; Zakeeruddin, S. M.; Moser, J. E.; Humphry-Baker, R.; Gratzel, M. Journal of the American Chemical Society 2004, 126, 7164.
    (23)Xing, H. B.; Wang, T.; Zhou, Z. H.; Dai, Y. Y. Synthetic Communications 2006, 36, 2433.
    (24)Ganeshpure, P. A.; George, G.; Das, J. Journal of Molecular Catalysis A: Chemical 2008, 279, 182.
    (25)Duan, Z. Y.; Gu, Y. L.; Zhang, J.; Zhu, L. Y.; Deng, Y. Q. Journal of Molecular Catalysis A: Chemical 2006, 250, 163.
    (26)Zhao, G. Y.; Jiang, T.; Gao, H. X.; Han, B. X.; Huang, J.; Sun, D. H. Green Chemistry 2004, 6, 75.
    (27)Du, Y. Y.; Tian, F. L.; Zhao, W. Z. Synthetic Communications 2006, 36, 1661.
    (28)Anderson, J. L.; Armstrong, D. W. Analytical Chemistry 2003, 75, 4851.
    (29)Wei, G. T.; Yang, Z. S.; Lee, C. Y.; Yang, H. Y.; Wang, C. R. C. Journal of the American Chemical Society 2004, 126, 5036.
    (30)MacFarlane, D. R.; Meakin, P.; Sun, J.; Amini, N.; Forsyth, M. Journal of Physical Chemistry B 1999, 103, 4164.
    (31)Matsumoto, H.; Yanagida, M.; Tanimoto, K.; Nomura, M.; Kitagawa, Y.; Miyazaki, Y. Chemistry Letters 2000, 922.
    (32)Quinn, B. M.; Ding, Z. F.; Moulton, R.; Bard, A. J. Langmuir 2002, 18, 1734.(33)Sun, J.; Forsyth, M.; MacFarlane, D. R. Journal of Physical Chemistry B 1998, 102, 8858.
    (34)Murase, K.; Nitta, K.; Hirato, T.; Awakura, Y. Journal of Applied Electrochemistry 2001, 31, 1089.
    (35)Rao, C. J.; Venkatesan, K. A.; Nagarajan, K.; Srinivasan, T. G.; Rao, P. R. V. Electrochimica Acta 2009, 54, 4718.
    (36)Purcell, E. M.; Torrey, H. C. Phys. Rev 1946, 69, 37.
    (37)Bloch, F.; Hansen, W. W. Phys. Rev 1946, 69, 127.
    (38)Arnold, J. T.; Dharmatti, S. S.; Packard, M. E. J. Chem. Phys. 1951, 19, 507.
    (39)黃紹光 天下遠見 1999.
    (40)Tyrrell, H. J. V.; Harris, K. R. Diffusion in Liquids; Butterworths: London 1984.
    (41)Cussler, E. L. Diffusion, Mass Transfer in Fluid Systems; Cambridge University Cambridge, Press,1984.New York
    (42)Stejskal, E. O.; Tanner, J. E. Journal of Chemical Physics 1965, 42, 288.
    (43)L., C. E. Diffusion-Mass Transfer in Fluid Systems; Cambridge University Press: Cambridge, 1984.
    (44)Vogel, H. Phys. Z 1921, 22, 645.
    (45)Tokuda, H.; Tsuzuki, S.; Susan, M.; Hayamizu, K.; Watanabe, M. Journal of Physical Chemistry B 2006, 110, 19593.
    (46)Yoshida, Y.; Kondo, M.; Saito, G. Journal of Physical Chemistry B 2009, 113, 8960.
    (47)Greaves, T. L.; Weerawardena, A.; Fong, C.; Krodkiewska, I.; Drummond, C. J. Journal of Physical Chemistry B 2006, 110, 22479.
    (48)Anouti, M.; Caillon-Caravanier, M.; Dridi, Y.; Galiano, H.; Lemordant, D. Journal of Physical Chemistry B 2008, 112, 13335.
    (49)Zhao, C.; Burrell, G.; Torriero, A. A. J.; Separovic, F.; Dunlop, N. F.; MacFarlane, D. R.; Bond, A. M. Journal of Physical Chemistry B 2008, 112, 6923.
    (50)Roothan, C. C. J. Rev. Mod Phys 1951, 23, 69.
    (51)McWeeny, R.; Diercksen, G. Journal of Chemical Physics 1968, 49, 4852.
    (52)陳淑萍 國立成功大學碩士論文 2006.
    (53)Slater, J. C. Quantum Theory of Molecular and Solids. Vol. 4: The Self-Consistent Field for Molecular and Solids McGraw-Hill: New York, 1974.
    (54)Hohenberg, P.; Kohn, w. Phy. Rev. B 1964, 136, 864.
    (55)Kohn, W.; Sham, L. J. Physical Review 1965, 140, 1133.
    (56)Becke, A. D. Physical Review A 1988, 38, 3098.
    (57)Perdew, J. P.; Wang, Y. Physical Review B 1992, 45, 13244.
    (58)Lee, C. T.; Yang, W. T.; Parr, R. G. Physical Review B 1988, 37, 785.
    (59)He, L.; Tao, G. H.; Parrish, D. A.; Shreeve, J. M. Journal of Physical Chemistry B 2009, 113, 15162.
    (60)Yoshizawa, M.; Xu, W.; Angell, C. A. Journal of the American Chemical Society 2003, 125, 15411.

    下載圖示 校內:2014-01-16公開
    校外:2014-01-16公開
    QR CODE