簡易檢索 / 詳目顯示

研究生: 王禹琁
Wang, Yu-Hsuan
論文名稱: RC柱性能曲線分析模型之驗證與改進
Validation and Improvement for Analytical Capacity Curve of Reinforced Concrete Columns
指導教授: 杜怡萱
Tu, Yi-Hsuan
學位類別: 碩士
Master
系所名稱: 規劃與設計學院 - 建築學系
Department of Architecture
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 257
中文關鍵詞: 耐震評估推垮分析鋼筋混凝土
外文關鍵詞: seismic assessment, push over analysis, column, reinforced concrete
相關次數: 點閱:129下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文針對一套適用於低層RC及加強磚造之耐震評估法─簡化推垮分析,以華盛頓大學RC柱試體與13座國內RC柱試體,驗證其柱構件分析模型的準確性,並根據驗證結果檢討誤差原因,更新分析模型,再以更新後分析模型對同樣試體重新比對,驗證更新效果。
    本研究比對分析與試驗之破壞模式、最大強度、降伏變位以及性能曲線圖形,比對結果發現分析模型對軸力過大,即 大於0.7之試體,或混凝土抗壓強度超過69MPa( 700kgf/cm2 )且 大於0.4者,無法以程式進行分析。而性能曲線比對結果呈現華盛頓大學試體強度有全面低估或強度異常下降的情形,國內RC柱試體大致準確,但剪力強度略為高估。而整體破壞模式比對結果顯示對撓曲破壞之判定準確,但部分剪力與撓剪破壞試體之破壞模式判定有誤。最大強度比對結果呈現華盛頓大學試體強度皆略為低估,國內RC柱試體則大致準確。降伏變位比對結果顯示所有試體之變位皆高估。
    針對上述誤差,本文更新分析模型之P-Δ效應考慮方式,握裹滑移變位公式,以及撓剪破壞之判定方式,更新後模型可有效改善性能曲線強度低估與強度異常下降問題,並提升剪力破壞模式判定的準確度。唯剪力破壞模式之性能曲線仍有部分強度略為高估,部分剪力與撓剪破壞模式判定有誤。

    The thesis is aimed at improving the accuracy of an analytical model for reinforced concrete (RC) columns. The model is part of a seismic assessment method called Simplified Push-Over Analysis (SPOA) used for low-rise RC and confined masonry building structures. Before the improvement was made, the model was verified with the column specimen databank of University of Washington (UW) and 13 domestic RC column specimens. The analytical and experimental capacity curves were compared and discussed. According to the comparison, the analytical model was modified. The modified model was then compared with the same specimens to verify the effect of the improvement.
    In the comparison, failure mode, maximum strength, yielding displacement, and the shape of capacity curve were discussed. It was found that the analytical model cannot apply to columns with the axial load ratio ( ) higher than 0.7, or columns with the compressive strength of concrete higher than 69 MPa (700kgf/cm2) and higher than 0.4.
    The comparison before improvement showed that the analytical model may misjudge the failure mode for the columns fail in flexure-shear or shear. It also under-estimated the strength for most of the specimens of the UW databank and slightly overestimated the shear strength for the domestic specimens. The comparison for yielding displacement showed obvious overestimate for all specimens.
    Modifications for the P-Δeffect consideration, the formula for bond slip displacement, and the determination of flexure-shear failure were made. After the modification, the analytical model shows better accuracy in failure mode, maximum strength, and yielding displacement. The analytical capacity curves fit well with the experimental ones. However, it still slightly overestimates the shear strength.

    圖目錄 IV 表目錄 VIII 符號說明 X 第一章 緒論 1-1 1.1 研究動機與目的 1-1 1.1.1 研究動機 1-1 1.1.2 研究目的 1-2 1.2 文獻回顧 1-2 1.3 研究內容與方法 1-6 1.4 研究適用範圍 1-7 1.5 章節概述 1-7 第二章 簡化推垮分析介紹 2-1 2.1 簡化推垮分析內容 2-1 2.1.1 基本假設與概念 2-1 2.1.2 計算推垮曲線 2-3 2.1.3 換算最大地表加速度 2-4 2.1.4 結構崩塌判定 2-5 2.2 柱構件性能曲線計算 2-6 2.3 簡化推垮分析計算程式SPOC 2-15 2.4 柱構件分析程式之輸入與輸出格式 2-17 2.4.1 SPOCC輸入檔 2-17 2.4.2 SPOCC輸出檔 2-20 2.5小結 2-21 第三章 國內外鋼筋混凝土柱式驗資料與初步比對結果 3-1 3.1 分析原則與假設條件 3-1 3.1.1 分析原則 3-1 3.1.2 未知條件假設 3-3 3.2 華盛頓大學柱資料庫 3-4 3.2.1 資料庫簡介 3-4 3.2.2 資料庫內容 3-4 3.3國內鋼筋混凝土柱試體 3-10 3.3.1 楊智斌論文試體 3-10 3.3.2 翁樸文論文試體 3-13 3.4 分析結果與比對 3-18 3.4.1 華盛頓大學柱資料庫之比對 3-18 3.4.2 國內RC柱試體比對 3-40 3.5 小結 3-49 第四章 RC柱構件性能曲線模型更新 4-1 4.1 更新程式的比對試體 4-1 4.1.1 選取比對試體 4-1 4.1.2 比對方式 4-7 4.2 P-Δ效應 4-9 4.3 握裹滑移變位 4-10 4.3.1 握裹滑移變位背景 4-10 4.3.2 握裹滑移變位模型介紹 4-11 4.3.3 握裹滑移變位模型更新 4-16 4.4 剪力強度公式 4-21 4.4.1 ACI剪力強度公式 4-21 4.4.2 AIJ極限剪力強度 4-22 4.4.3 Priestley et al.剪力強度公式 4-24 4.4.4剪力強度公式更新 4-26 4.5 更新前後性能曲線比對 4-29 4.5.1考慮P-Δ效應與否 4-29 4.5.2修正握裹滑移變位公式 4-34 4.5 3剪力強度公式修正 4-39 4.6 小結 4-54 第五章 分析方法之重驗證 5-1 5.1 柱構件破壞模式之比對 5-1 5.2 最大強度與降伏變位比對 5-3 5.3 性能曲線比對 5-11 5.4 小結 5-14 第六章 結論與建議 6-1 6.1 結論 6-1 6.2 建議 6-3 參考文獻 參-1 附錄A A-1 附錄B B-1 附錄C C-1 附錄D D-1

    1. 葉勇凱 等,『鋼筋混凝土建築物耐震能力詳細評估分析方法 (推垮分析)』,NCREE-09-015,國家地震工程研究中心技術報告,台北,2009。
    2. 宋裕棋 等,『鋼筋混凝土建築物耐震能力評估系統SERCB』,http://sercb.dyndns.org/SERCBWeb/Default.aspx
    3. 蔡克銓、黃世建、鍾立來,『校舍之耐震評估與補強講習會』,國家地震工程研究中心技術報告,NCREE-05-014,台北,2005。
    4. 劉子暐, 『簡化推垮分析法驗證之研究』,碩士論文,國立成功大學,台南,2008。
    5. ATC, ”Seismic Evaluation and Retrofit of Concrete Buildings.” ATC-40 Report, Applied Technology Council, Redwood City, California, 1996.
    6. ACI Committee 318, “Building Code Requirements for Structural Concrete (ACI 318-11) and Commentary,” American Concrete Institute, 2011.
    7. FEMA, “Prestandard and Commentary for the Seismic Rehabilitation of Buildings,” FEMA 356 Repost, Federal Emergency Management Agency, Washington, DC, 2000.
    8. 鍾立來 等,『校舍結構耐震評估與補強技術手冊 第二版』,NCREE-09-23,國家地震工程研究中心技術報告,台北,2009。
    9. University of Washington, ” PEER Structural Performance Database,” ( http://www.ce.washington.edu/~peera1/ ), 2003.
    10. 楊智斌,『新城國中校舍實尺寸柱桿件之耐震測試研究』,碩士論文,國立台灣科技大學,台北,2005。
    11. 翁樸文,『鋼筋混凝土短柱受剪破壞之耐震行為研究』,碩士論文,國立台灣科技大學,台北,2007。
    12. 張旭福,『鋼筋混凝土短柱補強措施之定量研究』,碩士論文,國立成功大學建築系,台南,1993。

    13. Elwood, K., “Shake Table Test and Analytical Studies on the Gravity Load Collapse of Reinforced Concrete Frame,” Ph. D Dissertation, Department of Civil and Environmental Engineering, University of California, Berkeley, 2002.
    14. Sheu, M. S., “A Grid Model for Prediction of Monotonic and Hysteretic Behavior of Reinforced Concrete Slab-Column Connections transferring Moment,” Ph. D. Dissertation, University of Washington, Seattle, Washington, 1976.
    15. 杜怡萱,『RC學校建築振動台試驗與耐震診斷分析研究』,博士論文,國立成功大學建築研究所,台南,2004。
    16. Berry, M., Parrish, M., Eberhard, M., “Peer Structural Performance Database User’s Manual,” Pacific Earthquake Engineering Research Center,Berkeley,2004.
    17. 中國土木水利工程學會,『混凝土工程設計規範與解說(401-93)』,2005。
    18. Eligehausen, R., Popov, E. P., and Bertero, V. V.,”Local Bond Stress-Slip Relationship of Well-Confined Relationship of a Deformed Bar Under Generalized Excitations,”Report NO. UCB/EERC 83/23, pp.169, University of California-Berkeley, Berkeley. CA.1983.
    19. Hawkins, N. M., Lin, I. J., and Jeang, F. L., “Local Bond Strength of Science for Cyclic Reversed Loadings,” Bond in Concrete, Applied Science Publishers, pp. 151-161, London, UK, 1982.
    20. Otani, S., and Sezen, M. A., “Behavior of Multistory Reinforced Concrete frames durings Earthquakes,” Structure Research Series No.392, pp.551.,University of Illinois, Urbana, IL, 1972.
    21. Alsiwat, Jaber M. and Saatcioglu, Murat, “Reinforcement Anchorage Slip under Monotonic Loading,” J. Struct. Eng. N. Y., v 118, n 9, p.2421-2438, Sep 1992.
    22. Lehman, D. E., and Moehle, J. P., “Seismic Performance of Well-Confined Concrete Bridge Columns,” Report NO.PEER-1998/01, pp. 316, University of California-Berkeley, Berkeley, CA, 2000.
    23. Sezen, Halil and Setzler, Eric J., “Reinforcement Slip in Reinforced Concrete Columns,” ACI Structural Journal, v 105, n 3, p.280-289, May/June 2008.
    24. AIJ, “AIJ Structural Design Guidelines for Reinforced Concrete Building,”Architectural Institute of Japan,1994.
    25. Priestley, M. J., Verma, M., and Xiao, Yan, “Seismic Shear Strength of Reinforced Concrete Columns,” ASCE Journal of Structural Engineering,Vol. 120, No.8, pp.2310-2329, 1994.
    26. Ang, B. G., Priestley, M. J. N., and Paulay, T. “ Seismic shear strength of circular reinforced concrete columns.” ACI Struct. J., 86(1), 45-59.,1989.
    27. Wong, Y. L., Paulay, T., and Priestley, M. J. N. “Response of circular reinforced concrete conlumns to multi-directional seismic attack.” ACI Struct. J., 90(2) 180-191, 1993.

    下載圖示 校內:立即公開
    校外:2014-09-12公開
    QR CODE