簡易檢索 / 詳目顯示

研究生: 林志堅
Lin, Chih-Chien
論文名稱: 增強氮化鎵發光二極體光輸出效率及其特性研究
Investigation of light output extraction enhancement in GaN-based light emitting diodes
指導教授: 李清庭
Lee, Ching-Ting
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 109
中文關鍵詞: 氮化鎵發光二極體氮化鎵共振腔發光二極體氧化銦錫奈米柱氧化鋅奈米柱
外文關鍵詞: GaN-based light-emitting diodes, GaN-based resonant cavity light-emitting diodes (RCLEDs), Indium-tin-oxide (ITO) nanorod arrays, Zinc-oxide (ZnO) nanorod arrays
相關次數: 點閱:113下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,III-V族發光二極體越來越受到重視,並且被廣泛地運用在顯示器、背光源與照明光源。為了獲得更佳的效能,內部量子轉換效率與外部光取出效率的提升是非常重要且被需要的。以目前發光二極體的磊晶技術來看,內部量子轉換效率已經明顯被改善且提升達到70 ~ 80%。然而,發光二極體仍被外部光取出效率所限制影響,無法提高總輸出效率。在本論文中,提出低成本與低溫環境成長之水熱法成長氧化鋅奈米柱,並且成長運用於氮化鎵發光二極體上。進而增加光輸出效率達20.3%且對電特性之影響降到最低。接下來,利用自催化汽液固成長機制與斜向電子槍蒸鍍系統成長氧化銦錫奈米柱於氮化鎵發光二極體上。在斜向角度為45o時,可以同時在上方表面與側壁成長奈米柱並得到最佳匹配等效折射率1.6 (介於空氣與氮化鎵之間)。結合正上方表面與側壁氧化銦錫奈米柱之效果,可以有效增加光輸出效率達34%。最後,本論文亦提出一簡單方法製作出共振腔發光二極體,利用藍寶石基板背部拋光,成長底部布拉格反射鏡,再與上方布拉格反射鏡,形成共振腔結構,在電激發光光譜之448nm波段,提升光輸出強度248%及窄化發光光譜線寬達10nm。根據實驗成果,奈米柱陣列與共振腔結構均可有效改善並增加氮化鎵發光二極體之光輸出效率。

    Recently, III-V nitride-based light-emitting diodes (LEDs) have aroused considerable interest in applications of displays, back lights, and light sources. To obtain high performances, the improvement of both internal quantum efficiency and light-extraction efficiency of the LEDs is needed. In view of the achievement in epitaxial growth and structure, the internal quantum efficiency of the LEDs has been improved significantly. However, the high power and high efficiency of LEDs are still obstructed by light-extraction efficiency. In this dissertation, a low temperature and low cost solution growth technique was successfully employed to grow ZnO nanorod arrays on GaN-based LEDs. Electric properties of the LEDs were least affected by this deposition method. A 20.3% increase in light output was obtained by the introduction of ZnO nanorod arrays. Furthermore, using self-catalyst vapor-liquid-solid mechanism, ITO nanorod arrays were deposited on the top surface and side-wall of the GaN-based LEDs by electron-beam deposition. The ITO nanorod arrays with matched effective refractive index of 1.6 between air and p-GaN layer was deposited on the top surface of the LEDs using oblique-angle 45o. By combining the contribution of top surface and side-wall ITO nanorod arrays, the total light output power increase of 34% could be obtained. Finally, to enhance the light output intensity and narrow electroluminescence spectrum linewidth, we proposed a simple method for fabricating resonant cavity light emitting diodes (RCLEDs) by depositing two dielectric distributed Bragg reflectors (DDBRs) on the polished backside of sapphire substrates and the top surface of the LEDs, respectively. The electroluminescence light output intensity increases by 245% at an emitted wavelength of 448 nm and the associated FWHM of the light output intensity reduces by 10 nm. According to the experimental results, the nanorod arrays and RCLEDs structure can be expected as promising methods for improving the light extraction efficiency of GaN LEDs.

    Contents Abstract (in Chinese) I Abstract (in English) III Chapter 1 Introduction 1 1.1 Background and motivation 1 1.2 Overview of this dissertation 3 Reference 4 Chapter 2 GaN-based light-emitting diodes 9 2.1 Backgrounds of GaN-based LEDs 9 2.2 A brief history of GaN-based LEDs 11 2.3 Fabrication of GaN-based LEDs 13 2.3.1 Epitaxy of GaN-based LEDs structure 13 2.3.2 Fabrication process of GaN-based LEDs 13 Reference 23 Chapter 3 GaN-based LEDs using ZnO nanorod arrays produced by aqueous solution growth technique 27 3.1 Motivation 27 3.2 Aqueous solution growth method 28 3.2.1 Growth of Al-doped ZnO seed layer by RF sputtering deposition method 29 3.2.2 Growth of ZnO nanorod by solution growth technique 29 3.3 Characterization of ZnO nanorod arrays 30 3.3.1 X-ray powder diffraction (XRD) 30 3.3.2 Photoluminescence (PL) spectrum measurement 31 3.3.3 Scanning electron microscope (SEM) image 32 3.3.4 Fourier transform infrared spectroscopy (FTIR) 32 3.3.5 Energy dispersive X-ray spectrometer (EDX) 33 3.4 Configuration of GaN-based LEDs with ZnO nanorod arrays 34 3.5 Measurement and experimental results 35 3.6 Summary 39 Reference 52 Chapter 4 Light output extraction enhancement in GaN-based LEDs using ITO nanorod arrays 55 4.1 Motivation 55 4.2 Oblique-angle electron-beam deposition system 56 4.3 Configuration of ITO nanorod arrays with different oblique-angle θ 57 4.4 GaN-based LEDs with ITO nanorod arrays with different oblique-angle θ 59 4.4.1 Experimental 59 4.4.2 Results and discussion 59 4.4.3 Summary 61 4.5 GaN-based LEDs using top and side-wall nanorod arrays 61 4.5.1 Experimental 61 4.5.2 Results and discussion 62 4.5.3 Summary 65 Reference 79 Chapter 5 GaN-based resonant cavity light emitting diodes with top and bottom dielectric distributed Bragg reflectors 82 5.1 Motivation 82 5.2 Theories 84 5.2.1 Physics of Fabry-Perot (FP) cavity 84 5.2.2 Quality of RCLEDs 85 5.2.3 Distributed Bragg reflectors (DBRs) 86 5.3 Experimental 88 5.4 Results and discussion 89 5.5 Summary 91 Reference 104 Chapter 6 Conclusions and future work 107 6.1 Conclusions 107 6.2 Future work 109 Figure Captions Fig. 2.1 The schematic of GaN-based LEDs structure 18 Fig. 2.2 Fabrication process of etching mesa 19 Fig. 2.3 Fabrication process of n-electrode 20 Fig. 2.4 Fabrication process of p-electrode 21 Fig. 2.5 Top view image of GaN-based LEDs 22 Fig. 3.1 Schematic structure of RF co-sputtering system 41 Fig. 3.2 Schematic diagram of (a) the aqueous solution deposition system and (b) the ZnO nanorod arrays structure 42 Fig.3.3 XRD spectra of the ZnO nanorod arrays 43 Fig. 3.4 Room temperature PL spectra of the ZnO nanorod arrays 44 Fig. 3.5 (a) Side view and (b) the 45o tilted top view of the deposited ZnO nanorod arrays 45 Fig. 3.6 The FTIR spectrum of ZnO nanorod arrays 46 Fig. 3.7 Schematic cross-sectional diagram of GaN-based LEDs with ZnO nanorod arrays. 47 Fig. 3.8 Current-voltage (I-V) characteristics of LEDs with and without ZnO nanorod arrays (Length=700nm) 48 Fig. 3.9 Room temperature electroluminescence (EL) spectra for LEDs with and without ZnO nanorod arrays (Length=700nm) 49 Fig. 3.10 Light output characteristics of LEDs with and without ZnO nanorod arrays (Length=700nm) 50 Fig. 3.11 Angular distribution of the light output from LEDs with and without ZnO nanorod arrays (Length=700nm) 51 Fig. 4.1 (a) Oblique-angle electron-beam deposition system and (b) schematic configuration of oblique-angle deposition. 68 Fig. 4.2 SEM image of ITO nanorod with different oblique-angle (a) θ = 30o, (b) θ = 45o and (c) θ = 60o 69 Fig. 4.3 The dependence of refractive index on oblique-angle θ 70 Fig. 4.4 Structure of (a) conventional LEDs and (b) LEDs with various ITO nanorod arrays 71 Fig. 4.5 Current-voltage (I-V) characteristics of LEDs with and without the ITO nanorod arrays deposited with different oblique-angle θ 72 Fig. 4.6 Light output characteristics of LEDs with and without the ITO nanorod arrays deposited with different oblique-angle θ 73 Fig. 4.7 Structure of (a) Conventional LEDs, (b) LEDs with side-wall TiO2, (c) LEDs with top and side-wall ITO nanorod arrays, (d) LEDs with side-wall ITO nanorod arrays and (e) LEDs with top ITO nanorod arrays 74 Fig. 4.8 SEM images of ITO nanorod arrays on (a) top surface and (b) side-wall of LEDs 75 Fig. 4.9 Current-voltage characteristics of LEDs with and without the top and side-wall ITO nanorod arrays 76 Fig. 4.10 Light output characteristics of LEDs with and without the top and side-wall ITO nanorod arrays 77 Fig. 4.11 Light output divergence angle of various LEDs. 78 Fig. 5.1 Illustrating the (a) structure and (b) internal reflection of the Fabry-Perot cavity 92 Fig. 5.2 Definition of Q-factor (Q) and finesse (F). δω is the spectral width at half-maximum of the resonance peak 93 Fig. 5.3 The optical property of the DBR structure 94 Fig. 5.4 AFM image of sapphire surface (a) before polished and (b) after polished 95 Fig. 5.5 The reflection of the TiO2/SiO2 DDBRs with 9 pairs and 10 pairs 96 Fig. 5.6 Configuration structure of (a) conventional LEDs and (b) RCLEDs 97 Fig. 5.7 Electroluminescence spectra of conventional LEDs and RCLEDs 98 Fig. 5.8 Current-voltage (I-V) characteristics of conventional LEDs and RCLEDs 99 Fig. 5.9 Light output characteristics of conventional LEDs and RCLEDs 100 Fig. 5.10 Light output divergence angle of conventional LEDs and RCLEDs. 101 Fig. 5.11 Angle-resolved EL spectra of RCLEDs. 102 Fig. 5.12 Relative EL intensity of conventional LEDs and RCLEDs after 100 hr. 103 Table Captions Table 3.1 The EDX analysis of the ZnO nanorod arrays. 40 Table 4.1 Volume fraction of air and ITO with different oblique-angle θ 67

    Chapter 1
    [1] S. Nakamura, T. Mukai, and M. Senoh, “Candela‐class high‐brightness InGaN/AlGaN double‐heterostructure blue‐light‐emitting diodes,” Appl. Phys. Lett., no. 64, pp. 1687-1689, 1994.
    [2] C. T. Lee, U. Z. Yang, C. S. Lee, and P. S. Chen, “White light emission of monolithic carbon-implanted InGaN-GaN light-emitting diodes,” IEEE Photonics Technol. Lett., vol. 18, pp. 2029-2031, 2006.
    [3] J. Piprek, R. Farrell, S. DenBaars, and S. Nakamura, “Effects of built-in polarization on InGaN-GaN vertical-cavity surface-emitting lasers,” IEEE Photonics Technol. Lett., vol. 18, pp. 7-9, 2006.
    [4] S. Nakamura, M. Senoh, N. Iwasa, and S. Nagahama, “High-brightness InGaN blue, green and yellow light-emitting diodes with quantum well structures,” Jpn. J. Appl. Phys., vol. 34, pp. L797-L799, 1995.
    [5] G. Y. Xu, A. Salvador, W. Kim, Z. Fan, C. Lu, H. Tang, H. Markoc, G. Smith, M. Estes, B. Goldberg, W. Yank, and S. Krishnankutty, “High speed, low noise ultraviolet photodetectors based on GaN p-i-n and AlGaN(p)-GaN(i)-GaN(n) structures,” Appl. Phys. Lett., vol. 71, pp. 2154-2156, 1997.
    [6] T. G. Zhu, D. J. H. Lambert, B. S. Shelton, M. N. Wong, U. Chowdhury, H. K. Kwon, and R. D. Dupuis, “High-voltage GaN pin vertical rectifiers with 2 μm thick i-layer,” Electron. Lett., vol. 36, pp. 1971-1972, 2000.
    [7] G. T. Dang, A. P. Zhang, F. Ren, X. A. Cao, S. J. Pearton, H. Cho, J. Han, J. I. Chyi, C. M. Lee, C. C. Chuo, S. N. G. Chu, and R. G. Wilson, “High voltage GaN Schottky rectifiers,” IEEE Trans. Electron Devices, vol. 47, pp. 692-696, 2000.
    [8] B. S. Shelton, D. J. H. Lambert, H. J. Jang, M. M. Wong, U. Chowdhury, Z. T. Gang, H. K. Kwon, Z. Liliental-Weber, M. Benarama, M. Feng, and R. D. Dupuis, “Selective area growth and characterization of AlGaN/GaN heterojunction bipolar transistors by metalorganic chemical vapor deposition,” IEEE Trans. Electron Devices, vol. 48, pp. 490-494, 2001.
    [9] A. P. Zhang, J. Han, F. Ren, K. E. Waldrio, C. R. Abernathy, B. Luo, G. Dang, J. W. Johnson, K. P. Lee, and S. J. Pearton, “GaN bipolar junction transistors with regrown emitters,” Electrochem. Solid State Lett., vol. 4, pp. G39-G41, 2001.
    [10] T. Matsuoka, H. Okamoto, M. Nakao, H. Harima, and E. Kurimoto, “Optical bandgap energy of wurtzite InN,” Appl. Phys. Lett., vol. 81, pp. 1246-1248 2002.
    [11] H. Morkoc, Nitride Semiconductors and Devices, (Springer-Verlag, Berlin, 1999).
    [12] J. I. Pankove, E. A. Miller, and J. E. Berkeyheiser, “GaN blue light-emitting diodes,” J. Lumines., vol. 5, pp. 84-86, 1972.
    [13] H. Amano, N. Sawaki, I. Akasaki, and Y. Toyoda, “Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer,” Appl. Phys. Lett., vol. 48, pp. 353-355, 1986.
    [14] H. Amano, N. Sawaki, I. Akasaki, and Y. Toyoda, “P-type conduction in Mg-doped GaN treated with low-energy electron beam irradiation,” Jpn. J. Appl. Phys., vol. 28, pp. L2112-L2114, 1989.
    [15] S. Nakamura, N. Iwasa, M. Senoh, and T. Mukai, “Hole compensation mechanism of p-type GaN films,” Jpn. J. Appl. Phys., vol. 31, pp. 1258-1266, 1992.
    [16] I. H. Kim, C. Sone, O. H. Nam, Y. J. Park, and T. Kim, “Crystal tilting in GaN grown by pendoepitaxy method on sapphire substrate,” Appl. Phys. Lett., vol. 75, pp. 4109-4111, 1999.
    [17] T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura, “Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening,” Appl. Phys. Lett., vol. 84, pp. 855-857, 2004.
    [18] S. I. Na, G. Y. Ha, D. S. Han, S. S. Kim, J. Y. Kim, J. H. Lim, D. J. Kim, K. I. Min, and S. J. Park, “Selective wet etching of p-GaN for efficient GaN-based light-emitting diodes,” IEEE Photonics Technol. Lett., vol. 18, pp. 1512-1514, 2006.
    [19] C. H. Kuo, C. C. Lin, S. J. Chang, Y. P. Hsu, J. M. Tsai, W. C. Lai, and P. T. Wang, “Nitride-based light-emitting diodes with p-AlInGaN surface layers,” IEEE Trans. Electron Devices, vol. 52, pp. 2346-2349, 2005.
    [20] H. Y. Lee, X. Y. Huang, and C. T. Lee, “Light output enhancement of GaN-based roughened LEDs using bias-assisted photoelectrochemical etching method,” J. Electrochem. Soc., vol. 155, pp. H707-H709, 2008.
    [21] S. J. Chang, C. S. Chang, Y. K. Su, R. W. Chuang, W. C. Lai, C. H. Kuo, Y. P. Hsu, Y. C. Lin, S. C. Shei, H. M. Lo, J. C. Ke, and J. K. Sheu, “Nitride-based LEDs with an SPS tunneling contact layer and an ITO transparent contact,” IEEE Photonics Technol. Lett., vol. 16, pp. 1002-1004, 2004.
    [22] M. Yamada, T. Mitani, Y. Narukawa, S. Shioji, I. Niki, S. Sonobe, K. Deguchi, M. Sano, and T. Mukai, “InGaN-based near-ultraviolet and blue-light-emitting diodes with high external quantum efficiency using a patterned sapphire substrate and a mesh electrode,” Jpn. J. Appl. Phys., vol. 41, pp. L1431-L1433, 2002.
    [23] D. S. Han, J. Y. Kim, S. I. Na, S. H. Kim, K. D. Lee, B. Kim, and S. J. Park, “Improvement of light extraction efficiency of flip-chip light-emitting diode by texturing the bottom side surface of sapphire substrate,” IEEE Photonics Technol. Lett., vol. 18, pp. 1406-1408, 2006.
    [24] O. B. Shchekin, J. E. Epler, T. A. Trottier, T. Margalith, D. A. Steigerwald, M. O. Holcomb, P. S. Martin, and M. R. Krames, “High performance thin-film flip-chip InGaN-GaN light-emitting diodes,” Appl. Phys. Lett., vol. 89, pp. 071109-1-071109-3, 2006.
    [25] J. K. Kim, T. Gessmann, E. F. Schubert, J. Q. Xi, H. Luo, J. Cho, C. Sone, and Y. Park, “GaInN light-emitting diode with conductive omnidirectional reflector having a low-refractive-index indium-tin oxide layer,” Appl. Phys. Lett., vol. 88, pp. 013501-1-013501-3, 2006.
    [26] J. K. Kim, S. Chhajed, M. F. Schubert, E. F. Schubert, A. J. Fischer, M. H. Crawford, J. Cho, H. Kim, and C. Sone, “Light-extraction enhancement of GaInN light-emitting diodes by graded-refractive-index indium tin oxide anti-reflection contact,” Adv. Mater., vol. 20, pp. 801-804, 2008.
    [27] D. H. Kim, C. O. Cho, Y. G. Roh, H. Jeon, Y. S. Park, J. Cho, J. S. Im, C. Sone, Y. Park, W. J. Choi, and Q. H. Park, “Enhanced light extraction from GaN-based light-emitting diodes with holographically generated two-dimensional photonic crystal patterns,” Appl. Phys. Lett., vol. 87, pp. 203508-1-203508-3, 2005.

    Chapter 2
    [1] T. Yamamoto, and K. Y. Hiroshi, “Materials design for the fabrication of low-resistivity p-type GaN using a codoping method,” Jpn. J. Appl. Phys., vol. 36, pp. L180-L183, 1997.
    [2] K. Y. Hiroshi, and T. Yamamoto, “Materials design of the codoping for the fabrication of low-resistivity p-type ZnSe and GaN by ab-initio electronic structure calculations,” Phys. Status Solidi B-Basic Solid State Phys., vol. 202, pp. 763-773, 1997.
    [3] T. Yamamoto, and K. Y. Hiroshi, “Electronic structures of p-type GaN codoped with Be or Mg as the acceptors and Si or O as the donor codopants,” J. Cryst. Growth, vol. 189, pp. 532-536, 1998.
    [4] G. Kipshidze, V. Kuryatkov, B. Borisov, Y. Kuryavtsev, R. Asomoza, S. Nikishin, and H. Temkin, “Mg and O codoping in p-type GaN and AlxGa1-xN (0 < x < 0.08),” Appl. Phys. Lett., vol. 80, pp. 2910-2912, 2002.
    [5] T. Yamamoto, “Codoping method for solutions to doping problems in wide-band-gap semiconductors,” Phys. Status Solidi A-Appl. Mat., vol. 193, pp. 423-433, 2002.
    [6] O. Brandt, H. Yang, H. Kostial, and K. H. Ploog, “High p-type conductivity in cubic GaN/GaAs(113)A by using Be as the acceptor and O as the codopant,” Appl. Phys. Lett., vol. 69, pp. 2707-2709, 1996.
    [7] K. Y. Hiroshi, T. Nishimatsu, T. Yamamoto, and N. Orita, “Codoping method for the fabrication of low-resistivity wide band-gap semiconductors in p-type GaN, p-type AlN and n-type diamond: prediction versus experiment,” J. Phys.-Condes. Matter, vol. 13, pp. 8901-8914, 2001.
    [8] R. Y. Korokov, J. M. Gregie, and B. W. Wessels, “Electrical properties of p-type GaN:Mg codoped with oxygen,” Appl. Phys. Lett., vol. 78, pp. 222-224, 2001.
    [9] H. Katayama-Youshida, R. Kato, and T. Yamamoto, “New valence control and spin control method in GaN and AlN by codoping and transition atom doping,” J. Cryst. Growth, vol. 231, pp. 428-436, 2001.
    [10] S. D. Lester, F. A. Ponce, M. G. Craford, and D. A. Steigerwald, “High dislocation densities in high efficiency GaN-based light-emitting diodes,” Appl. Phys. Lett., vol. 66, pp. 1249-1251, 1995.
    [11] C. L. Wang, J. R. Gong, M. F. Yeh, B. J. Wu, W. T. Liao, T. Y. Lin, and C. K. Lin, “Improvement in the characteristics of GaN-based light-emitting diodes by inserting AlGaN-GaN short-period superlattices in GaN underlayers,” IEEE Photonics Technol. Lett., vol. 18, pp. 1497-1499, 2006.
    [12] R. Huang, H. P. Dong, D. Q. Wang, K. J. Chen, H. L. Ding, X. Wang, W. Li, J. Xu, and Z. Y. Ma, “Role of barrier layers in electroluminescence from SiN-based multilayer light-emitting devices,” Appl. Phys. Lett., vol. 92, pp. 181106-1-181106-3, 2008.
    [13] K. N. Bourdakos, D. M. N. M. Dissanayake, T. Lutz, S. R. P. Silva, and R. J. Curry, “Highly efficient near-infrared hybrid organic-inorganic nanocrystal electroluminescence device,” Appl. Phys. Lett., vol. 92, pp. 153311-1-153311-3, 2008.
    [14] E. H. Park, D. N. H. Kang, I. T. Ferguson, S. K. J. J. S. Park, and T. K. Yoo, “The effect of silicon doping in the selected barrier on the electroluminescence of InGaN/GaN multiquantum well light emitting diode,” Appl. Phys. Lett., vol. 90, pp. 031102-1-031102-3, 2007.
    [15] C. F. Huang, C. Y. Chen, C. F. Lu, and C. C. Yang, “Reduced injection current induced blueshift in an InGaN/GaN quantum-well light-emitting diode of prestrained growth,” Appl. Phys. Lett., vol. 91, pp. 051121-1-051121-3, 2007.
    [16] M. S. Ferdous, X. Wang, M. N. Fairchild, and S. D. Hersee, “Effect of threading defects on InGaN/GaN multiple quantum well light emitting diodes,” Appl. Phys. Lett., vol. 91, pp. 231107-1-231107-3, 2007.
    [17] H. P. Maruska, and J. J. Tietjen, “The preparation and properties of vapor-deposited single-crystal-line GaN,” Appl. Phys. Lett., vol. 15, pp. 327-329, 1969.
    [18] J. I. Pankove, E. A. Miller, D. Richman, and J. E. Berkeyheiser, “Electroluminescence in GaN,” J. Lumines., vol. 4, pp. 63-66, 1971.
    [19] H. P. Maruska, D. A. Stevenson, and J. I. Pankove, “Violet luminescence of Mg-doped GaN,” Appl. Phys. Lett., vol. 22, pp. 303-305, 1973.
    [20] H. Amano, M. Kito, K. Hiramatsu, and I. Akasaki, “P-type conduction in Mg-doped GaN treated with low-energy electron beam irradiation (LEEBI),” Jpn. J. Appl. Phys., vol. 28, pp. L2112-L2114, 1989.
    [21] S. Nakamura, T. Mukai, and M. Senoh, “High-brightness InGaN/AlGaN double-heterostructure blue-green-light-emitting diodes,” J. Appl. Phys., vol. 76, pp. 8180-8191, 1994.
    [22] C. T. Lee, U. Z. Yang, C. S. Lee, and P. S. Chen, “White light emission of monolithic carbon-implanted InGaN-GaN light-emitting diodes,” IEEE Photon. Technol. Lett., vol. 18, pp. 2029-2031, 2006.

    Chapter 3
    [1] C. T. Lee, Y. H. Chou, J. T. Yan, and H. Y. Lee, “Light enhancement of Al nanoclusters embedded in Al-doped ZnO films of GaN-based light-emitting diodes,” J. Vac. Sci. Technol. B, vol. 27, pp. 1901-1903, 2009.
    [2] T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura, “Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening,” Appl. Phys. Lett., vol. 84, pp. 855-857, 2004.
    [3] X. Guo, Y. L. Li, and E. F. Schubert, “Efficiency of GaN-InGaN light- emitting diodes with interdigitated mesa geometry,” Appl. Phys. Lett., vol. 79, pp. 1936-1938, 2001.
    [4] H. Y. Lee, X. Y. Huang, and C. T. Lee, “Light output enhancement of GaN-based roughened LEDs using bias-assisted photoelectrochemical etching method,” J. Electrochem. Soc., vol. 155, pp. H707-H709, 2008.
    [5] S. J. An, J. H. Chae, G. C. Yi, and G. H. Park, “Enhanced light output of GaN-based light-emitting diodes with ZnO nanorod arrays,” Appl. Phys. Lett., vol. 92, pp. 121108-1-121108-3, 2008.
    [6] J. Zhong, H. Chen, G. Saraf, Y. Lu, C. K. Choi, J. J. Song, D. M. Mackie, and H. Shen, “Integrated ZnO nanotips on GaN light emitting diodes for enhanced emission efficiency,” Appl. Phys. Lett., vol. 90, pp. 203515-1-203515-3, 2007.
    [7] D. B. Thompson, J. J. Richardson, S. P. DenBaars, and F. F. Lange, “Light emitting diodes with ZnO current spreading layers deposited from a low temperature aqueous solution,” Appl. Phys. Exp., vol. 2, pp. 042101-1-042101-3 (2009).
    [8] M. K. Lee, C. L. Ho, and P. C. Chen, “Light extraction efficiency enhancement of GaN blue LED by liquid-phase-deposited ZnO rods,” IEEE Photonics Technol. Lett., vol. 20, pp. 252-254, 2008.
    [9] K. K. Kim, S. D. Lee, H. Kim, J. C. Park, S. N. Lee, Y. Park, S. J. Park, and S. W. Kim, “Enhanced light extraction efficiency of GaN-based light-emitting diodes with ZnO nanorod arrays grown using aqueous solution,” Appl. Phys. Lett., vol. 94, pp. 071118-1-071118-3, 2009.
    [10] A. E. Morales, and U. Pal, “Defect annihilation and morphological improvement of hydrothermally grown ZnO nanorods by Ga doping,” Appl. Phys. Lett., vol. 93, pp. 193120-1-193120-3, 2008.
    [11] A. Janotti, and C. G. Van de Walle, “Native point defects in ZnO,” Phys. Rev. B, vol. 76, pp. 165202-1-165202-22, 2007.
    [12] B. Lin, Z. Fu, and Y. Jia, “Green luminescent center in undoped zinc oxide films deposited on silicon substrates”, Appl. Phys. Lett., vol. 79, pp. 943-945, (2001).
    [13] P. S. Xu, Y. M. Sun, C. S. Shi, F. Q. Xu, and H. B. Pan, “The electronic structure and spectral properties of ZnO and its defects,” Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms, vol. 199, pp. 286-290, 2003.
    [14] M. A. Verges, A. Mifsud, and C. J. Serna, “Formation of rod-like zinc oxide microcrystals in homogeneous solutions,” J. Chem. Soc. Faraday Trans., vol. 86, pp. 959-963, 1990.
    [15] P. S. Chen, C. S. Lee, J. T. Yan, and C. T. Lee, “Performance improvement and mechanism of chlorine-treated InGaN–GaN light-emitting diodes,” Electrochem. Solid State Lett., vol. 10, pp. H165-H167, 2007.
    [16] I. Moreno, and C. C. Sun, “Modeling the radiation pattern of LEDs,” Opt. Exp., vol. 16, pp. 1808-1819, 2008.

    Chapter 4
    [1] J. Piprek, R. Farrell, S. DenBaars, and S. Nakamura, “Effects of built-in polarization on InGaN-GaN vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett., vol. 18, pp. 7-9, 2006.
    [2] C. T. Lee, U. Z. Yang, C. S. Lee, and P. S. Chen, “White light emission of monolithic carbon-implanted InGaN–GaN light-emitting diodes,” IEEE Photon. Technol. Lett., vol. 18, pp. 2029-2031, 2006.
    [3] H. Y. Lee, X. Y. Huang, and C. T. Lee, “Light output enhancement of GaN-based roughened LEDs using bias-assisted photoelectrochemical etching method,” J. Electrochem. Soci., vol. 155, pp. H707-H709, 2008.
    [4] C. H. Chiu, P. Yu, C. H. Chang, C. S. Yang, M. H. Hsu, H. C. Kuo, and M. A. Tsai, “Oblique electron-beam evaporation of distinctive indium-tin-oxide nanorods for enhanced light extraction from InGaN/GaN light emitting diodes,” Opt. Express, vol. 17, pp. 21250-21256, 2009.
    [5] M. A. Tsai, P. Yu, C. L. Chao, C. H. Chiu, H. C. Kuo, S. H. Lin, J. J. Huang, T. C. Lu, and S. C. Wang, “Efficiency enhancement and beam shaping of GaN-InGaN vertical-injection light-emitting diodes via high-aspect-ratio nanorod arrays,” IEEE Photon. Technol. Lett., vol. 21, pp. 257-259, 2009.
    [6] O. B. Shchekin, J. E. Epler, T. A. Trottier, T. Margalith, D. A. Steigerwald, M. O. Holcomb, P. S. Martin, and M. R. Krames, “High performance thin-film flip-chip InGaN-GaN light-emitting diodes,” Appl. Phys. Lett., vol. 89, pp. 071109-1-071109-3, 2006.
    [7] J. K. Kim, S. Chhajed, M. F. Schubert, E. F. Schubert, A. J. Fischer, M. H. Crawford, J. Cho, H. Kim, and C. Sone, “Light-extraction enhancement of GaInN light-emitting diodes by graded-refractive-index indium tin oxide anti-reflection contact,” Adv. Mater., vol. 20, pp. 801-804, 2008.
    [8] J. K. Kim, T. Gessmann, E. F. Schubert, J. Q. Xi, H. Luo, J. Cho, C. Sone, and Y. Park, “GaInN light-emitting diode with conductive omnidirectional reflector having a low-refractive-index indium-tin oxide layer,” Appl. Phys. Lett., vol. 88, pp. 013501-1-013501-3, 2006.
    [9] D. H. Kim, C. O. Cho, Y. G. Roh, H. Jeon, Y. S. Park, J. Cho, J. S. Im, C. Sone, Y. Park, W. J. Choi, and Q. H. Park, “Enhanced light extraction from GaN-based light-emitting diodes with holographically generated two-dimensional photonic crystal patterns,” Appl. Phys. Lett., vol. 87, pp. 203508-1-203508-3, 2005.
    [10] C. F. Shen, S. J. Chang, T. K. Ko, C. T. Kuo, S. C. Shei, W. S. Chen, C. T. Lee, C. S. Chang, and Y. Z. Chiou, “Nitride-based light emitting diodes with textured sidewalls and pillar waveguides,” IEEE Photon. Technol. Lett., vol. 18, pp. 2517-2519, 2006.
    [11] C. T. Pan, M. F. Chen, P. J. Cheng, Y. M. Hwang, S. D. Tseng, and J. C. Huang, “Fabrication of gapless dual-curvature microlens as a diffuser for a LED package,” Sens. Actuator A-Phys., vol. 150, pp. 156-167, 2009.
    [12] P. Yu, C. H. Chang, C. H. Chiu, C. S. Yang, J. C Yu, H. C. Kuo, S. H. Hsu, and Y. C. Chang, “Efficiency enhancement of GaAs photovoltaics employing antireflective indium tin oxide nanocolumns,” Adv. Mater., vol. 21, pp. 1618-1621, 2009.
    [13] S. Takaki, Y. Aoshima, and R. Satoh, “Growth mechanism of indium tin oxide whiskers prepared by sputtering,” Jpn. J. Appl. Phys., vol. 46, pp. 3537-3544, 2007.
    [14] K. H. H. Peter, T. D. Stephen, H. F. Richard, and T. Nir, “All-polymer optoelectronic devices,” Science, vol. 285, pp. 233-236, 1999.
    [15] K. M. Chang, C. C. Lang, and C. C. Cheng, “The silicon nitride film formed by ECR-CVD for GaN-based LED passivation,” Phys. Status Solidi A-Appl. Mat., vol. 188, pp. 175-178, 2001.
    [16] J. Zhong, H. Chen, G. Saraf, Y. Lu, C. K. Choi, J. J. Song, D. M. Mackie, and H. Shen, “Integrated ZnO nanotips on GaN light emitting diodes for enhanced emission efficiency,” Appl. Phys. Lett., vol. 90, pp. 203515-1-203515-3, 2007.

    Chapter 5
    [1] C. T. Lee, M. Y. Yeh, C. D. Tsai, and Y. T. Lyu, “Low resistance bilayer Nd/Al ohmic contacts on n-type GaN,” J. Electron. Mater., vol. 26, pp. 262-265, 1997.
    [2] J. T. Yan, and C. T. Lee, “Improved detection sensitivity of Pt/β-Ga2O3/GaN hydrogen sensor diode,” Sens. Actuators B, vol. 143, pp. 192-197, 2009.
    [3] L. H. Huang, S. H. Yeh, C. T. Lee, H. Tang, J. Bardwell, and J. B. Webb, “AlGaN/GaN metal-oxide-semiconductor high-electron mobility transistors using oxide insulator grown by photoelectrochemical oxidation method,” IEEE Electron Devices Lett., vol. 29, pp. 284-286, 2008.
    [4] A. J. Shaw, A. L. Bradley, J. F. Donegan, and J. G. Lunney, “GaN resonant cavity light-emitting diodes for plastic optical fiber applications,” IEEE Photonics Technol. Lett., vol. 16, pp. 2006-2009, 2004.
    [5] H. S. Oh, J. H. Joo, J. H. Lee, J. H. Baek, J. W. Seo, and J. S. Kwak, “Structural optimaization of high-power AlGaInP resonant cavity light-emitting diodes for visible light communications,” Jpn. J. Appl. Phys., vol. 47, pp. 6214-6216, 2008.
    [6] R. H. Horng, W. K. Wang, S. Y. Huang and D. S. Wuu, “Effect of resonant cavity in wafer-bonded green InGaN LED with dielectric and silver mirrors,” IEEE Photonics Technol. Lett., vol. 18, pp. 457-459, 2006.
    [7] P. de Mierry, J. M. Bethoux, H. P. D. Schenk, M. Vaille, E. Feltin, B. Beaumont, M. Leroux, S. Dalmasso, and P. Gibart, “Vertical cavity InGaN LEDs grown by MOVPE,” Phys. Status Solidi A-Appl. Mat., vol. 192, pp. 335-340, 2002.
    [8] F. Natali, D. Byrne, A. Dussaigne, N. Grandjean, J. Massies, and B. Damilano, “High-Al-content crack-free AlGaN/GaN Bragg mirrors grown by molecular-beam epitaxy,” Appl. Phys. Lett., vol. 82, pp. 499-501, 2003.
    [9] N. E. J. Hunt, E. F. Schubert, R. F. Kopf, D. L. Sivco, A. Y. Cho, and G. J. Zydzik, “Increased fiber communications bandwidth from a resonant cavity light emitting diode emitting at λ=940nm,” Appl. Phys. Lett., vol. 63, pp. 2600-2602, 1993.
    [10] D. I. Vabic, and S. W. Corzine, “Analytic expressions for the reflection delay, penetration depth, and absorptance of quarter-wave dielectric mirrors,” IEEE J. Quantum Electron., vol. 28, pp. 514-524, 1992.
    [11] B. Roycroft, M. Akhter, P. Maaskant, P. De Mierry, E. Calleja, S. Fernández, F. B. Naranjo, T. McCormack, and B. Corbett, “Experimental characterisation of GaN-based resonant cavity light emitting diodes,” Phys. Status Solidi A-Appl. Mat., vol. 192, pp. 97-102, 2002.

    無法下載圖示 校內:2016-08-15公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE