| 研究生: |
卓孟寬 Cho, Meng-Kuan |
|---|---|
| 論文名稱: |
平移式並聯工具機之運動與動力分析 Kinematic and Dynamic Analysis of Translational Parallel Machines |
| 指導教授: |
藍兆杰
Lan, Chao-Chieh |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 146 |
| 中文關鍵詞: | 並聯機構 、平移式並聯機構 、等效模型 、軸承剛性 、顫振穩定性分析 |
| 外文關鍵詞: | Parallel kinematic mechanism, translational parallel manipulator, equivalent model, bearing stiffness, stablility of chatter |
| 相關次數: | 點閱:136 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文發展應用於五軸車銑複合機之平移式並聯機構,為避免ㄧ般串聯式工具機無法接地,導致需要較厚實桿件以達到ㄧ定剛性之缺點,本文以3-PRRR及3-PUU做為五軸車銑複合機之傳動機構,此二種平移式並聯機構除利用驅動器接地克服上述缺點外,3-PRRR具有定值雅可比矩陣之優點,可降低控制難度或降低控制器成本;3-PUU則有工作空間大之優點,因此應用較為廣泛。而於本文設計中,兩機構之驅動平移接頭以平行之方式排列,使兩者皆可於單方向進行大幅度之移動,作為夾放工件或刀具之用途。由於並聯式機構之端接器由多個運動鏈所控制,端接器之運動因此屬於較複雜且不直觀之耦合運動,為簡化並聯式機構之動力模型,本文推導並聯式機構之等效模型,將整組並聯式機構等效為三組雙質量彈簧阻尼系統,使並聯式機構之耦合動力模型簡化成直觀之雙質量彈簧動力模型。
除了探討並聯式機構之運動與動力模型外,本文也針對並聯式機構應用於工具機之其他領域進行研究,以建立改善工具機之方向。本文利用商用軟體模擬機構之接頭力及剛性兩部分,根據接頭力的模擬與本文建立之選用軸承流程,可藉此選用符合使用建議之軸承;剛性模擬則可用於預估機構之整體剛性,並根據模擬結果歸納軸承剛性對整體剛性之影響甚大,因此本文延伸探討軸承剛性並進行軸承剛性實驗與理論數值之比對。最後利用車削穩定性分析與剛性模擬結果,實際建立車削顫振穩定界線圖,藉此探討影響界線圖之參數,並歸納應提高工具機整體剛性之結論。
Most of the types of mechanical architecture of existing machine tools are serial. For example, the milling machine and turning machine are two representative serial manipulators. Since the serial architecture, the serial machines cannot be actuated by motors fixed on the base frame, and have only one kinematic chain to support the end-effector. Therefore, the serial machines need stronger and more massive structure to create the rigidity. This characteristic will cause the rising cost of motors or low processing efficiency. In contrast to the serial machine, the parallel kinematic manipulator (PKM) has two or more kinematic chains to support the end-effector. Hence they can be made more lightweight without sacrificing the rigidity. Hence they can be made more lightweight without sacrificing the rigidity.
In order to develop the parallel machine tools, this paper has chosen two types of the translational parallel manipulator (TPM) as the transmission mechanism of the machine tools, which are 3-PRRR and 3-PUU. The TPMs have straightforward and intuitive kinematic, which can reduce the cost of the controller. Moreover, this paper also presents other topics to improve these machines, including the derivation of the equivalent model, the stiffness simulation of the mechanisms, the experiment of bearing stiffness, and the stability of chatter vibrations. By using the results of these topics, this paper can present some directions to improve the performance of the parallel machines.
[1] Merlet, J. P. (2006). Parallel robots (Vol. 128). Springer Science & Business Media.
[2] Gwinnett, J. E. (1931). U.S. Patent No. 1,789,680. Washington, DC: U.S. Patent and Trademark Office.
[3] Gough, V. E. (1962). Universal tyre test machine. Proc. FISITA 9th Int. Technical Congr., London, 1962, 117-137.
[4] Stewart, D. (1965). A platform with six degrees of freedom. Proceedings of the institution of mechanical engineers, 180(1), 371-386.
[5] ParalleMIC "The true origins of parallel robots" http://www.parallemic.org/Reviews/Re view007.html [Accessed: January 21, 2020]
[6] Cappel, K. L. (1967). U.S. Patent No. 3,295,224. Washington, DC: U.S. Patent and Trademark Office.
[7] Westwood, J. D., et al. "A system for robot assisted maxillofacial surgery." Medicine Meets Virtual Reality: Art, Science, Technology: Healthcare (r) evolution 50 (1998): 220.
[8] Lueth, T. C., Hein, A., Albrecht, J., Demirtas, M., Zachow, S., Heissler, E., ... & Bier, J. (1998, September). A surgical robot system for maxillofacial surgery. In IECON'98. Proceedings of the 24th Annual Conference of the IEEE Industrial Electronics Society (Cat. No. 98CH36200) (Vol. 4, pp. 2470-2475). IEEE.
[9] Pisla, Doina, et al. "PARAMIS parallel robot for laparoscopic surgery." Chirurgia 105.5 (2010): 677-683.
[10] Force dimension "omega.3" https://www.forcedimension.com/products/omega-3/overview
[11] Xiaojun, C., Yanping, L., Chengtao, W., Yiqun, W., Xudong, W., & Guofang, S. (2010, November). An integrated surgical planning and virtual training system using a force feedback haptic device for dental implant surgery. In 2010 International Conference on Audio, Language and Image Processing (pp. 1257-1261). IEEE.
[12] SingularityHub "Adept Quattro Becomes World’s Fastest Robot (Video)" https://singu larityhub.com/2009/11/05/adept-quattro-becomes-worlds-fastest-robot-video/ [Accessed: January 21, 2020]
[13] All3DP "What is a Delta 3D Printer?" https://all3d p.com/2/what-is-a-delta-3d-printer-simply-explained/ [Accessed: January 21, 2020]
[14] Pandilov, Z., & Dukovski, V. (2012). Parallel kinematics machine tools: Overview-from history to the future. Annals of the Faculty of Engineering Hunedoara, 10(2), 111.
[15] Boër, C. R., Molinari-Tosatti, L., & Smith, K. S. (Eds.). (2012). Parallel kinematic machines: Theoretical aspects and industrial requirements. Springer Science & Business Media.
[16] All3DP " Gallery of Existing Parallel Mechanisms" https://www.parallemic.org/Whos Who/Gallery.html# [Accessed: January 21, 2020]
[17] Fan, S., Fan, S., Lan, W., & Song, G. (2019, May). A defect identification approach of operations for the driving element of multi-duty parallel manipulators. In 2019 International Conference on Robotics and Automation (ICRA) (pp. 510-516). IEEE.
[18] EXECHON " Exechon home website " http://www.exechon.com/
[19] LOXIN " Tricpet PKM " http://www.loxin2002.com/general-description [Accessed: January 21, 2020]
[20] YTEAM " YTEAM home website " http://www.chnrobot.cn/en/index.aspx [Accessed: January 21, 2020]
[21] Starrag " Starrag home website " https://www.starrag.com/en-us [Accessed: January 21, 2020]
[22] Pandilov, Z., & Rall, K. (2006). Parallel kinematics machine tools: history, present, future. Mechanical Engineering”-Scientific Journal, 25(1), 3-20.
[23] Wang, M., Liu, H., & Huang, T. (2017). An approach for the lightweight design of a 3-SPR parallel mechanism. Journal of Mechanisms and Robotics, 9(5).
[24] Bi, Z. M., & Jin, Y. (2011). Kinematic modeling of Exechon parallel kinematic machine. Robotics and Computer-Integrated Manufacturing, 27(1), 186-193.
[25] Zeng, Q., Ehmann, K. F., & Cao, J. (2014). Tri-pyramid Robot: Design and kinematic analysis of a 3-DOF translational parallel manipulator. Robotics and Computer-Integrated Manufacturing, 30(6), 648-657.
[26] Li, Y., & Xu, Q. (2006). Kinematic analysis and design of a new 3-DOF translational parallel manipulator.
[27] Carricato, M., & Parenti-Castelli, V. (2003). A family of 3-DOF translational parallel manipulators. J. Mech. Des., 125(2), 302-307.
[28] Kong, X., & Gosselin, C. M. (2002). Kinematics and singularity analysis of a novel type of 3-CRR 3-DOF translational parallel manipulator. The International Journal of Robotics Research, 21(9), 791-798.
[29] Pashkevich, A., Chablat, D., & Wenger, P. (2009). Stiffness analysis of overconstrained parallel manipulators. Mechanism and Machine Theory, 44(5), 966-982.
[30] Di Gregorio, R., & Parenti-Castelli, V. (2002). Mobility analysis of the 3-UPU parallel mechanism assembled for a pure translational motion. J. Mech. Des., 124(2), 259-264.
[31] Briot, S., & Khalil, W. (2015). Dynamics of parallel robots. From rigid bodies to flexible elements. Springer.
[32] Wang, Z., Wang, G., Ji, S., Wan, Y., & Yuan, Q. (2007, December). Optimal design of a linear delta robot for the prescribed cuboid dexterous workspace. In 2007 IEEE International Conference on Robotics and Biomimetics (ROBIO) (pp. 2183-2188). IEEE.
[33] Lu, S., & Li, Y. (2015, July). Dynamic analysis of a 3-DOF 3-PUU parallel manipulator based on the principle of virtual work. In 2015 IEEE International Conference on Advanced Intelligent Mechatronics (AIM) (pp. 1445-1450). IEEE.
[34] Carricato, M., & Parenti-Castelli, V. (2003). A family of 3-DOF translational parallel manipulators. J. Mech. Des., 125(2), 302-307.
[35] EMAG " VL 2 Turning Machine for Efficient Machining with Top Precision " https:// www.emag.com/machines/turning-machines/modular-vl/vl-2.html [Accessed: January 21, 2020]
[36] 伺服馬達FRLM3K20615A規格
[37] Harris, T. A. (2001). Rolling bearing analysis. John Wiley and sons.
[38] Lim, T. C., & Singh, R. (1990). Vibration transmission through rolling element bearings, part I: bearing stiffness formulation. Journal of sound and vibration, 139(2), 179-199.
[39] HIWIN " 交叉滾柱軸承 CRB系列 " http://www.hiwinsh.com/upload/1513820328_. pdf [Accessed: January 21, 2020]
[40] Guo, Y., & Parker, R. G. (2012). Stiffness matrix calculation of rolling element bearings using a finite element/contact mechanics model. Mechanism and machine theory, 51, 32-45.
[41] Gunduz, A., & Singh, R. (2013). Stiffness matrix formulation for double row angular contact ball bearings: Analytical development and validation. Journal of Sound and Vibration, 332(22), 5898-5916.
[42] THK " 交叉滾柱軸環 綜合產品目錄 " https://tech.thk.com/cs/products/pdf_ download.php?file=510C_18_CrossRollerRing.pdf [Accessed: January 21, 2020]
[43] THK " 交叉滾柱軸承內環旋轉用/外環旋轉用 " https://tech.thk.com/ct /products/ thkdlinks.php?id=4696&_ga=2.158722042.1528049608.1576397845-1986767192.15 68963010 [Accessed: January 21, 2020]
[44] Altintas, Y., & Ber, A. A. (2001). Manufacturing automation: metal cutting mechanics, machine tool vibrations, and CNC design. Appl. Mech. Rev., 54(5), B84-B84.
[45] Lamikiz, A., Lopez de Lacalle, L. N., Sanchez, J. A., & Bravo, U. (2005). Calculation of the specific cutting coefficients and geometrical aspects in sculptured surface machining. Machining Science and Technology, 9(3), 411-436.