簡易檢索 / 詳目顯示

研究生: 劉彥辰
Liu, Yan-Cheng
論文名稱: 狀態空間微分再生核法之發展與應用
Development of the State Space Differential Reproducing Kernel Method and It’s Application
指導教授: 吳致平
Wu, Chih-Ping
學位類別: 博士
Doctor
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2017
畢業學年度: 106
語文別: 中文
論文頁數: 84
中文關鍵詞: 功能性梯度材料Reissner混合變分原理無網格法微分再生核法均向性古典梁圓板撓曲自由震動
外文關鍵詞: differential reproducing kernel, functionally graded material, Reissner mixed variational theorem, meshless method, bending, free vibration
相關次數: 點閱:103下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文提出無網格配點法中,微分再生核內插法(Differential Reproducing Kernel, DRK)配合狀態空間法(State Space Methods),用於求解功能性梯度材料(Functionally Graded Materials, FGMs)之梁結構及圓板結構,探討三維撓曲及自由振動等相關物理問題。
    首先探討微分再生核內插法中,核函數中的改善函數及原始函數之選取,討論使用正規化高斯函數、三次曲線函數、四次曲線函數及八次曲線函數的搭配下,形狀函數之差異,並求解均向性材料古典梁受均勻載重下的撓曲分析,並搭配微分擬合法(Differential Quadrature Method, DQM)及解析解,相互驗證其函數搭配之優劣。
    再將所挑選出較準確的改善函數及原始函數,使用微分再生核內插法來求解功能性材料基於Reissner 能量泛函數之穩值原理推導混合Timoshenko梁理論之Euler-Lagrange方程式,並設定端點為不同邊界,如:簡支承、固定端及自由端之組合邊界條件,研究其靜態方程式下的各種物理量及精確程度。再運用Hamilton 原理來推導基於Reissner混合變分原理之Timoshenko梁理論之運動方程式,探討其結構於不同組合邊界條件下之自然振動頻率及主變數之模態。
    進而使用微分再生核內插法配合狀態空間法來求解軸對稱功能性梯度材料之疊層圓板,將圓板沿厚度切為數個薄層之方式,配合傳遞矩陣法計算其厚度方向之主要變數,與文獻對照及討論其切層數及微分再生核法中階數與點數多寡影響之精確度。

    A state space differential reproducing kernel (DRK) method is developed for the three-dimensional (3D) analysis of functionally graded material (FGM) axisymmetric circular plates with simply-supported and clamped edges. The strong formulation of this 3D elasticity axisymmetric problem is derived on the basis of the Reissner mixed variational theorem (RMVT), which consists of the Euler-Lagrange equations of this problem and its associated boundary conditions. The primary field variables are naturally independent of the circumferential coordinate, then interpolated in the radial coordinate using the early proposed DRK interpolation functions, and finally the state space equations of this problem are obtained, which represent a system of ordinary differential equations in the thickness coordinate. The state space DRK solutions can then be obtained by means of the transfer matrix method. The accuracy and convergence of this method are examined by comparing their solutions with the accurate ones available in the literature.

    Extended Abstract I 中文摘要 IV 誌謝 V 變數符號表 XII 第一章 緒論 1 1.1 研究動機及文獻回顧 1 1.2 本文內容 4 第二章 數值方法 6 2.1 微分再生核(DRK)內插法 6 2.1.1 DRK內插函數 6 2.1.2 DRK內插導函數 8 2.1.3 加權函數及原始函數 10 2.1.4 內插法形狀函數之分析 10 2.2 微分擬合法 11 2.3均向性材料古典梁撓曲分析 12 第三章 基於RMVT Timoshenko梁理論之撓曲與自然振動分析 23 3.1 幾何變數和應力變數假設 23 3.2 Reissner混合變分原理 24 3.2.1 Reissner 能量泛函數 24 3.2.2 Hamliton 原理 27 3.3 DRK內插法之方程式 28 3.4 撓曲分析 30 3.5 自然振動分析 35 第四章 三維軸對稱功能性圓板之撓曲分析 55 4.1 基於RMVT原理之狀態空間方程式 55 4.1.1 Reissner混合變分原理 55 4.1.2 Euler-Lagrange方程式 59 4.2 狀態空間微分再生核 60 4.2.1 狀態空間方程式 61 4.2.2 線性齊性系統理論 63 4.2.3 傳遞矩陣法 64 4.3 單層功能性材料圓板 65 4.4 三層功能性材料圓板 73 第五章 結論 78 第六章 參考文獻 80

    Alashti R.A. and Khorsand M. (2011), “Three-dimensional thermos-elastic analysis of a functionally graded cylindrical shell with piezoelectric layers by differential quadrature method”, Int. J. Press. Vess. Pip., 88, 167–80.
    Alashti R.A. and Khorsand M. (2012), “Three-dimensional nonlinear thermos-elastic analysis of functionally graded cylindrical shells with piezoelectric layers by differential quadrature method”, Acta. Mech., 223, 2565–90.
    Andrianarison O. and Benjeddou A. (2012), “Hamiltonian partial mixed finite elementstate space symplectic semi-analytical approach for the piezoelectric smart composites and FGM analysis”, Acta. Mech., 223, 1597–610.
    Asemi K., Ashrafi H., Salehi M. and Shariyat M. (2013), “Three-dimensional static and dynamic analysis of functionally graded elliptical plates, employing graded finite elements”, Acta. Mech., 224, 1849–64.
    Bellman R. and Casti J. (1971), “Differential quadrature and long-term integration”, J. Math. Anal. Appl., 34, 235-8.
    Bellman R., Kashef B.G. and Casti J. (1972), “Differential quadrature: a technique for the rapid solution of nonlinear partial differential equations”, J. Comput. Phys., 10, 40–52.
    Belytschko T., Krongauz Y., Organ D., Fleming M. and Krysl P. (1996), “Meshless methods: an overview and recent developments”, Comput. Methods Appl. Mech. Eng., 139, 3–47.
    Bert C.W. and Malik M. (1997), “Differential quadrature: a powerful new technique for analysis of composite structures”, Compos. Struct., 39, 179–89.
    Bufler H. (1971), “Theory of elasticity of a multilayered medium”, J. Elast., 1, 125–43.
    Chen W.Q. and Lue C.F. (2005), “3D free vibration analysis of cross-ply laminated plates with one pair of opposite edges simply supported”, Compos. Struct., 69, 77–87.
    Civalek O. and Ulker M. (2004), “Harmonic differential quadrature (HDQ) for axisymmetric bending analysis of thin isotropic circular plates”, Struct. Eng. Mech., Int. J., 17(1), 1-14.
    Darilmaz K. (2012), “Analysis of sandwich plates: a three-dimensional assumed stress hybrid finite element”, J. Sandw. Struct. Mater., 14, 487–501.
    Dorfmann A. and Nelson R.B. (1995), “Three-dimensional finite element for analyzing thin plate/shell”, Int. J. Numer. Methods Eng., 38, 3453–82.
    Du H., Lim M.K. and Lin R.M. (1994), “Application of generalized differential quadrature method to structural problems”, Int. J. Numer. Methods Eng., 37, 1881–96.
    Ebrahimi F., Rastgoo A. and Atai A.A. (2009), “A theoretical analysis of smart moderately thick shear deformable annular functionally graded plate”, Eur. J. Mech A/Solids, 28(5), 962-973.
    Ferreira AJM, Roque CMC, Carrera E, Cinefra M and Polit O. (2011), “Radial basis functions collocation and a unified formulation for bending, vibration and buckling analysis of laminated plates, according to a variation of Murakami’s zig–zag theory”, Eur. J. Mech. A-Solids, 30, 559–70.
    Ferreira AJM, Carrera E, Cinefra M and Roque CMC. (2013), “Radial basis function collocation for the bending and free vibration analysis of laminated plates using the Reissner Mixed Variational Theorem”, Eur. J. Mech. A-Solids, 39, 104–12.
    Ferreira AJM (2003), “A formulation of the multiquadric radial basis function method for the analysis of laminated composite plates”, Compos. Struct., 59, 385–92.
    Houmat A. (2006), “Three-dimensional free vibration analysis of plates using the h-p version of the finite element method”, J. Sound. Vibr., 290, 690–704.
    Kashtalyn M. and Menshykova M. (2009), “Effect of a functionally graded interlayer on three-dimensional elastic deformation of coated plates subjected to transverse loading”, Compos. Struct., 89, 167-76.
    Kashtalyn M. (2004), “Three-dimensional elasticity for bending of functionally graded rectangular plates”, Eur. J. Mech. A/Solids, 23, 853-64.
    Khezri M., Gharib M., Bradford M.A. and Vrcelj Z. (2015a), “Analysis of thick and orthotropic rectangular laminated composite plates using a state-space-based generalized RKP-FSM”, Compos. Struct., 133, 691–706.
    Khezri M., Gharib M., Bradford M.A. and Uy B. (2015b), “A state space augmented generalized RKPM for the three-dimensional analysis of thick and laminated composite plates”, Comput. Struct., 158, 225–39.
    Kiani Y. and Eslami M.R. (2013), “An exact solution for thermal buckling of annular FGM plates on an elastic medium”, Compos. Part B-Eng., 45(1), 101-110.
    Kong J. and Cheung Y.K. (1995), “Three-dimensional finite element analysis of thick laminated plates”, Comput. Struct., 57, 1051–62.
    Koizumi, M. (1997), “FGM activities in Japan”, Compos. Part B-Eng., 28(1-2), 1-4.
    Lal R. and Ahlawat N. (2015), “Axisymmetric vibrations and buckling analysis of functionally graded circular plate via differential transform method”, Eur. J. Mech. A/Solids, 52, 85-94.
    Li S. and Liu W.K. (1996), “Moving least-square reproducing kernel method (II) Fourier analysis”, Comput. Methods Appl. Mech. Eng., 139, 159–93.
    Li D., Qing G. and Liu Y. (2011), “A three-dimensional semi-analytical model for the composite laminated plates with a stepped lap repair”, Compos. Struct., 93, 1673–82.
    Liew K.M., Teo T.M. and Han J.B. (1999), “Comparative accuracy of DQ and HDQ methods for three-dimensional vibration analysis of rectangular plates”, Int. J. Numer. Methods Eng., 45, 1831–48.
    Liu C.F. and Lee Y.T. (2000), “Finite element analysis of three-dimensional vibrations of thick circular and annular plates”, J. Sound. Vibr., 233, 63–80.
    Liu W.K., Chen Y. and Chang C.T., Belytschko T. (1996), “Advances in multiple scale kernel particle methods”, Comput. Mech., 21, 73–111.
    Liu W.K., Jun S. and Zhang Y.F. (1995), “Reproducing kernel particle methods”, Int. J. Numer. Methods Fluids, 20, 1081–106.
    Liu W.K., Li S. and Belytschko T. (1997), “Moving least-square reproducing kernel methods (I) methodology and convergence”, Comput. Methods Appl. Mech. Eng., 143, 113–54.
    Liu W.K. and Chen Y. (1995), “Wavelet and multiple scale reproducing kernel methods”, Int. J. Numer. Methods Eng., 21, 901–31.
    Ma, L.S. and Wang, T.J. (2004), “Relationships between axisymmetric bending and buckling solutions of FGM circular plates based on third-order plate theory and classical plate theory”, Int. J. Solids Struct., 41(1), 85-101.
    Mojdehi A.R., Darvizeh A., Basti A. and Rajabi H. (2011), “Three-dimensional static and dynamic analysis of thick functionally graded plates by the meshless local Petro-Galerkin (MLPG) method”, Eng. Anal. Bound. Elem., 35, 1168–80.
    Müller, E., Drasar, C., Schilz, J. and Kaysser, W.A. (2003), “Functionally graded materials for sensor and energy applications”, Mater. Sci. Eng., 362(1-2), 17-39.
    Nguyen K.D. and Nguyen-Xuan H. (2015), “An isogeometric finite element approach for three-dimensional static and dynamic analysis of functionally graded material plate structures”, Compos. Struct., 132, 423–39.
    Pan, E. (2003), “Exact solution for functionally graded anisotropic elastic composite laminates”, J. Compos. Mater., 37(21), 1903-1920.
    Reddy, J.N., Wang, C.M. and Kitipornchai, S. (1999), “Axisymmetric bending of functionally graded circular and annular plates”, Eur. J. Mech. A/Solids, 18(2), 185-199.
    Redekop D. (2006), “Three-dimensional free vibration analysis of inhomogeneous thick orthotropic shells of revolution using differential quadrature”, J Sound Vibr , 291, 1029–40.
    Reddy, J.N. and Berry, J. (2012), “Nonlinear theories of axisymmetric bending of functionally graded circular plates with modified couple stress”, Compos. Struct., 94(12), 3664-3668.
    Reissner E. (1984), “On a certain mixed variational theorem and a proposed application”, Int. J. Numer. Methods Eng., 20, 1366–8.
    Reissner E. (1986), “On a mixed variational theorem and on a shear deformable plate theory”, Int. J. Numer. Methods Eng., 23, 193–8.
    Plevako, V.P. (1971), “On the theory of elasticity of inhomogeneous media”, PMM, 35(5), 853-860.
    Saidi, A.R., Rasouli, A. and Sahraee, S. (2009), “Axisymmetric bending and buckling analysis of thick functionally graded circular plates using unconstrained third-order shear deformation plate theory”, Compos. Struct., 89(1), 110-119.
    Sheng H.Y. and Ye J.Q. (2002a), “A semi-analytical finite element for laminated composite plates”, Compos. Struct., 57, 117–23.
    Sheng H.Y. and Ye J.Q. (2002b), “A state space finite element for laminated composite plates”, Comput. Methods Appl. Mech. Eng., 191, 4259–76.
    Sun C.T. and Liou W.J. (1987), “A three-dimensional hybrid-stress finite element formulation for free vibrations of laminated composite plates”, J. Sound. Vibr., 119, 1–14.
    Sun C.T. and Liou W.J. (1989), “Investigation of laminated composite plates under impact dynamic loading using a three-dimensional hybrid stress finite element method”, Comput. Struct., 33:879–84.
    Tornabene, F., Liverani, A. and Caligiana, G. (2012), “Laminated composite rectangular and annular plates: A GDQ solution for static analysis with a posteriori shear and normal stress recovery”, Compos. Part BEng., 43(4), 1847-1872.
    Vaghefi R., Baradaran G.H. and Koohkan H. (2010), “Three-dimensional static analysis of thick functionally graded plates by using meshless local Petro-Galerkin (MLPG) method”, Eng. Anal. Bound. Elem., 34, 564–73.
    Vlasov V.Z. (1957), “The method of initial functions in problems of theory of thick plates and shells”, Proc Ninth Int Congress Appl Mech., 6, 321-330.
    Watari, F., Yokoyama, A., Saso, F. and Kawasaki, T. (1997), “Fabrication and properties of functionally graded dental implant”, Compos. Part B-Eng., 28(1-2), 5-11.
    Wang, Y.M., Chen, S.M. and Wu, C.P. (2010), “A meshless collocation method based on the differential reproducing kernel interpolation”, Comput. Mech., 45(6), 585-606.
    Wu C.P., Chiu K.H. and Jiang R.Y. (2012a), “A meshless collocation method for the coupled analysis of functionally graded piezo-thermo-elastic shells and plates under thermal loads”, Int. J. Eng. Sci., 56, 29–48.
    Wu C.P., Chiu K.H. and Wang Y.M. (2008a), “A differential reproducing kernel particle method for the analysis of multilayered elastic and piezoelectric plates”, CMES-Comput. Model. Eng. Sci., 27, 163–86.
    Wu C.P., Chiu K.H. and Wang Y.M. (2008b), “A mesh-free DRK-based collocation method for the coupled analysis of functionally graded magneto-electro-elastic shells and plates”, CMES-Comput. Model. Eng. Sci., 35, 181–214.
    Wu C.P., Wang J.S. and Wang Y.M. (2009), “A DRK interpolation-based collocation method for the analysis of functionally graded piezoelectric hollow cylinders under electro-mechanical loads”, CMES-Comput. Model. Eng. Sci., 52, 1–37.
    Wu C.P. and Jiang R.Y. (2012b), “A state space differential reproducing kernel method for the 3D analysis of FGM sandwich circular hollow cylinders with combinations of simply-supported and clamped edges”, Compos. Struct., 94, 3401–20.
    Wu C.P. and Jiang R.Y. (2014), “A state space differential reproducing kernel method for the buckling analysis of carbon nanotube-reinforced composite circular hollow cylinders”, CMES-Comput. Model. Eng. Sci., 97, 239–79.
    Wu C.P. and Lee C.Y. (2001), “Differential quadrature solution for the free vibration analysis of laminated conical shells with variable stiffness”, Int. J. Mech. Sci., 43, 1853–69.
    Wu C.P. and Li H.Y. (2010a), “The RMVT- and PVD-based finite layer methods for the three-dimensional analysis of multilayered composite and FGM plates”, Compos. Struct., 92(10), 2476-2496.
    Wu C.P. and Li H.Y. (2010b), “An RMVT-based third-order shear deformation theory of multilayered functionally graded material plates”, Compos. Struct., 92, 2591-2605.
    Wu C.P. and Yang S.W. (2011a), “RMVT-based meshless collocation and element-free Galerkin methods for the approximate 3D analysis of multilayered composite and FGM circular hollow cylinders”, Compos. Part B-Eng., 42, 1683–700.
    Wu C.P. and Yang S.W. (2011b), “A semi-analytical element-free Galerkin method for the 3D free vibration analysis of multilayered FGM circular hollow cylinders”, J. Intell. Mater. Syst. Struct., 22, 1993–2007.
    Yang S.W., Wang Y.M., Wu C.P. and Hu H.T. (2010), “A meshless collocation method based on the differential reproducing kernel approximation”, CMES-Comput. Model. Eng. Sci., 60, 1–39.

    無法下載圖示 校內:立即公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE