| 研究生: |
劉政杰 Liu, Cheng-Chieh |
|---|---|
| 論文名稱: |
近代軍用航空發動機性能參數模擬研究 Performance Parameter Simulation Analysis of the Modern Military Aircraft Engine |
| 指導教授: |
賴維祥
Lai, Wei-Hsiang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 86 |
| 中文關鍵詞: | F100-PW-220發動機 、F119-PW-100發動機 、F135-PW-100發動機 、發動機性能參數模擬 、發動機離點模擬 |
| 外文關鍵詞: | F100-PW-220 engine, F119-PW-100 engine, F135-PW-100 engine, engine performance parameter simulation, engine off-point simulation |
| 相關次數: | 點閱:125 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
發動機為飛機的心臟,其設計的方向將直接關係著飛機的用途與性能,軍用戰機更是對其發動機有著很高的設計要求,研究發動機的性能,必須對其參數有著完善的蒐集,然而越是近代發動機,參數越是難以取得,要利用少量的已知發動機參數,去推測剩餘的未知參數,將是研究近代發動機所需面臨的課題。
本研究主要研究如何在參數不足的情況下,模擬近代軍用航空發動機性能參數,並補足缺失參數,本研究以F119-PW-100、F135-PW-100此類軍用渦輪扇發動機作為模擬對象,並以早期的F100-PW-220發動機作為近代發動機模擬的參考對象進行先期模擬,因其性能參數取得較容易,模擬準確度較高,且模擬結果對其餘兩款發動機都具重要的參考價值。模擬方式以推力與比燃油消耗率參數做為模擬的最終設計點,利用模擬軟體GasTurb中的敏感性研究法、參數研究法與最佳化研究法,幫助進行各性能參數的研究,了解各參數對設計點的影響,並利用參數設計特性,進行參數的合理化修正,最終找到符合設計點的各項性能參數,且模擬結果與設計點誤差均在3%以內。利用設計點模擬結果,對F119-PW-100、F135-PW-100發動機進行離點推力研究,結果表明此模擬的性能可提供足夠推力,使其在10 kft高空擁有1.2馬赫以上的飛行動力,進一步驗證模擬結果的準確性。
The engine is the heart of an aircraft, and its design affects the purpose and performance of the aircraft directly. Especially for military aircraft, it needs engine of higher performance requirements for high altitude and speed than civil aircraft. To study engine performance, it is necessary to have a complete collection of its parameters. However, modern military engine parameters are difficult to obtain, therefore, deducing unknown parameters is the main task for modern engine studies nowadays.
The topic of this study is to simulate the performance parameters of modern aircraft by using the engine simulation software ‘GasTurb’ under the circumstance of insufficient parameters.
This research simulates the performance parameters of F119-PW-100 and F135-PW-100 engines. And also simulate F100-PW-220 engine as the reference of modern engine simulation for preliminary simulation. Since the F100-PW-220 engine performance parameters are easier design in history, and with the high accuracy simulation result, it provides important reference value for the other two engines. The simulation takes thrust and specific fuel consumption rate parameters as the design point, and uses the sensitivity study method, parameter study method and optimization method in the simulation software to study the performance of each parameter. Parameters are further modified for rationalization by using its designable characteristic. These methods help us to understand the influence of each parameter on the design point. Finally, the performance parameters are found to meet the design point, and the range of error between the simulation result and the design point is within 3%. By using the simulation results of the F119-PW-100 and F135-PW-100 engines to simulate the thrust parameters from the off-design point, the results show that the performance of this simulation can provide sufficient thrust to enable them flight above Mach 1.2 at an altitude of 10 kft.
[1] J. Kurzke, "Gas Turbine Cycle Design Methodology: A Comparison of Parameter Variation with Numerical Optimization," ASME, München, Germany, 1998.
[2] 杨力, “基於GasTurb的進氣預冷卻技術對飛行器發動機性能的影響分析,” 華中科技大學碩士論文, 2015.
[3] 劉心鵬, “雙級壓縮微型渦輪引擎之設計研究,” 國立成功大學航空太空工程學系碩士論文, 2013.
[4] 田家榮, “微型渦輪發電系統性能分析與實驗證之研究,” 國立成功大學航空太空工程學系碩士論文, 2020.
[5] M. Jagtenberg, "Thesis Report Development of A Preliminary Lifing Analysis Tool For The F135-PW-100 Engine," Technische Universiteit Delft, February 19, 2018.
[6] 房丽瑶, “基于GasTurb的大涵道比渦扇發動機總體性能設計研究,” 中國民用航空飛行學院碩士學位論文, 2019.
[7] J. Gao and Y. Huang, "Modeling and Simulation of a Aero Turbojet Engine with GasTurb," International Conference on Intelligence Science and Information Engineering, 2011.
[8] R. Sung, "A Comparative Study of the Gas Turbine Simulation Program (GSP) 11 and GasTurb 11 on Their Respective Simulations for a Single-Spool Turbojet," University of Tennessee, Knoxville, 2013.
[9] W. Choi, I. Jeong, J. Kim and I.W. Lee, "Performance Analysis of Turboprop Aircraft Propulsion System by using Gasturb," KSPE Fall Conference, 2009.
[10] 旷典, “民航大涵道比渦扇發動機穩態模型建模及其修正技術研究,” 中國民用航空飛行學院碩士學位論文, 2018.
[11] V. Prisacariu and A. Ciubotaru, "Aspect Regarding of the Pratt & Whitney F100 Jet Engine Performances," Scientific Research & Education in the force, 2017.
[12] E. Roux, Turbofan and Turbojet Engines Database Handbook, 2007.
[13] F. Camm, "The Development of the F100-PW-220 and F110-GE-100 Engines: A Case Study of Risk Assessment and Risk Management," RAND, 1993.
[14] A. B. Evans, "The Effects of Compressor Seventh-Stage Bleed Air Extraction on Performance of the F100-PW-220 Afterburning Turbofan Engine," NASA Contractor Report 179447, February, 1991.
[15] “F15e戰鬥機的發動機各種參數,” [線上]. Available: https://www.pai-hang-bang.com/ap-ccagtytcy.html.
[16] J. D. Mattingly, Elements of Gas Turbine Propulsion, McGraw-Hill Series in Aeronautical and Aerospace Engineering, 1996.
[17] S. A. Suhr, “Preliminary Turboshaft Engine Design Methodology for Rotorcraft Applications,” Georgia Institute of Technology, December, 2006.
[18] I. Halliwell, "An Engine with High Power Extraction Potential for a Half-Scale Model of a Joint Strike Fighter," AIAA, August 24, 2011.
[19] GSP模擬軟體, “ABFAN model”.
[20] “F119 ENGINE,” Pratt & Whitney, [線上]. Available: https://prattwhitney.com/products-and-services/products/military-engines/f119.
[21] "F-35A Lightning II," U.S. Air Force, [線上]. Available: https://www.af.mil/About-Us/Fact-Sheets/Display/Article/478441/f-35a-lightning-ii/.
[22] 胡明熙, “F22與F35外型氣動力模擬,” 2020.
[23] “理想布雷登循環,” [線上]. Available: https://zh.wikipedia.org/wiki/%E5%B8%83%E9%9B%B7%E9%A1%BF%E5%BE%AA%E7%8E%AF.
[24] O. Younossi, M. V.Arena, R. M.Moore, M. Lorell, J. Mason and J. C.Graser, "Military Jet Engine Acquisition," U.S. Air Force, 2002.
校內:2026-07-22公開