| 研究生: |
林秦竹 Lin, Cin-Jhu |
|---|---|
| 論文名稱: |
Aza-Michael加成反應合成之高電位高分子電解質於鋰電池之應用 High-Voltage Polymer Electrolyte Synthesized from Aza-Michael Addition Reaction for Lithium Batteries |
| 指導教授: |
鄧熙聖
Teng, Hsi-Sheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 130 |
| 中文關鍵詞: | 鋰金屬電池 、固態電解質 、Aza-Michael加成反應 、互穿式電解質 |
| 外文關鍵詞: | Lithium metal battery, Solid-state electrolytes, Aza-Michael Addition Reaction, Interpenetrating Polymer Network Electrolyte |
| 相關次數: | 點閱:6 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
1. Bhatt, M.D. and C. O'Dwyer, Recent progress in theoretical and computational investigations of Li-ion battery materials and electrolytes. Physical Chemistry Chemical Physics, 2015. 17(7): p. 4799-4844.
2. Julien, C., et al., Lithium batteries. 2016: Springer.
3. Whittingham, M.S., Electrical energy storage and intercalation chemistry. Science, 1976. 192(4244): p. 1126-1127.
4. Mizushima, K., et al., LixCoO2 (0< x<-1): A new cathode material for batteries of high energy density. Materials Research Bulletin, 1980. 15(6): p. 783-789.
5. Winter, M., B. Barnett, and K. Xu, Before Li ion batteries. Chemical reviews, 2018. 118(23): p. 11433-11456.
6. Yoshino, A., Development of the lithium-ion battery and recent technological trends, in Lithium-ion batteries. 2014, Elsevier. p. 1-20.
7. Tarascon, J.-M. and M. Armand, Issues and challenges facing rechargeable lithium batteries. nature, 2001. 414(6861): p. 359-367.
8. Sun, L., et al., Recent progress and future perspective on practical silicon anode-based lithium ion batteries. Energy Storage Materials, 2022. 46: p. 482-502.
9. Li, M., et al., 30 years of lithium‐ion batteries. Advanced materials, 2018. 30(33): p. 1800561.
10. Zhu, P., et al., A review of current collectors for lithium-ion batteries. Journal of Power Sources, 2021. 485: p. 229321.
11. Scrosati, B. and J. Garche, Lithium batteries: Status, prospects and future. Journal of power sources, 2010. 195(9): p. 2419-2430.
12. Bazito, F.F. and R.M. Torresi, Cathodes for lithium ion batteries: the benefits of using nanostructured materials. Journal of the Brazilian Chemical Society, 2006. 17: p. 627-642.
13. Li, J., et al., Structural origin of the high-voltage instability of lithium cobalt oxide. Nature nanotechnology, 2021. 16(5): p. 599-605.
14. Zou, L., et al., Solid–liquid interfacial reaction trigged propagation of phase transition from surface into bulk lattice of Ni-rich layered cathode. Chemistry of Materials, 2018. 30(20): p. 7016-7026.
15. Fan, Q., et al., Mixed-conducting interlayer boosting the electrochemical performance of Ni-rich layered oxide cathode materials for lithium ion batteries. Journal of Power Sources, 2019. 421: p. 91-99.
16. Zheng, J., et al., Boosting cell performance of LiNi0. 8Co0. 15Al0. 05O2 via surface structure design. Small, 2019. 15(50): p. 1904854.
17. Whittingham, M.S., Lithium batteries and cathode materials. Chemical reviews, 2004. 104(10): p. 4271-4302.
18. Kebede, M.A., An investigation of the lattice parameter and micro-strain behaviour of LiMn2O4 coated with LiMn1. 5Ni0. 5O4 to attain high-rate capability and cycling stability. Journal of Energy Storage, 2023. 72: p. 108602.
19. Manthiram, A., A reflection on lithium-ion battery cathode chemistry. Nature communications, 2020. 11(1): p. 1550.
20. Miao, J., Review on electrode degradation at fast charging of Li-ion and Li metal batteries from a kinetic perspective. Electrochem, 2023. 4(2): p. 156-180.
21. Yang, L., et al., A high-rate capability LiFePO 4/C cathode achieved by the modulation of the band structures. Journal of Materials Chemistry A, 2021. 9(43): p. 24686-24694.
22. Wu, Y.-P., E. Rahm, and R. Holze, Carbon anode materials for lithium ion batteries. Journal of power sources, 2003. 114(2): p. 228-236.
23. Azuma, H., et al., Advanced carbon anode materials for lithium ion cells. Journal of power sources, 1999. 81: p. 1-7.
24. Molaiyan, P., et al., Recent progress in biomass-derived carbon materials for Li-ion and Na-ion batteries—A review. Batteries, 2023. 9(2): p. 116.
25. Chen, C., et al., Studies of Mg-substituted Li4− xMgxTi5O12 spinel electrodes (0≤ x≤ 1) for lithium batteries. Journal of the Electrochemical Society, 2001. 148(1): p. A102.
26. Chen, J.S., et al., Graphene-wrapped TiO 2 hollow structures with enhanced lithium storage capabilities. Nanoscale, 2011. 3(5): p. 2158-2161.
27. Yi, T.-F., et al., Recent development and application of Li4Ti5O12 as anode material of lithium ion battery. Journal of Physics and Chemistry of Solids, 2010. 71(9): p. 1236-1242.
28. Obrovac, M.N. and V.L. Chevrier, Alloy negative electrodes for Li-ion batteries. Chemical reviews, 2014. 114(23): p. 11444-11502.
29. Chan, C.K., et al., High-performance lithium battery anodes using silicon nanowires. Nature nanotechnology, 2008. 3(1): p. 31-35.
30. Cheng, X.-B., et al., Toward safe lithium metal anode in rechargeable batteries: a review. Chemical reviews, 2017. 117(15): p. 10403-10473.
31. Heine, J., et al., Fluoroethylene carbonate as electrolyte additive in tetraethylene glycol dimethyl ether based electrolytes for application in lithium ion and lithium metal batteries. Journal of the Electrochemical Society, 2015. 162(6): p. A1094.
32. Chen, L., et al., Lithium metal protected by atomic layer deposition metal oxide for high performance anodes. Journal of Materials Chemistry A, 2017. 5(24): p. 12297-12309.
33. Lin, D., Y. Liu, and Y. Cui, Reviving the lithium metal anode for high-energy batteries. Nature nanotechnology, 2017. 12(3): p. 194-206.
34. Xu, K., Electrolytes and interphases in Li-ion batteries and beyond. Chemical reviews, 2014. 114(23): p. 11503-11618.
35. Xu, K., Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chemical reviews, 2004. 104(10): p. 4303-4418.
36. Chaugule, A.A., A.H. Tamboli, and H. Kim, Ionic liquid as a catalyst for utilization of carbon dioxide to production of linear and cyclic carbonate. Fuel, 2017. 200: p. 316-332.
37. Zinigrad, E., et al., On the thermal stability of LiPF6. Thermochimica acta, 2005. 438(1-2): p. 184-191.
38. Zhang, S.S., K. Xu, and T.R. Jow, Study of LiBF4 as an electrolyte salt for a Li-ion battery. Journal of the Electrochemical society, 2002. 149(5): p. A586.
39. Parimalam, B.S. and B.L. Lucht, Reduction reactions of electrolyte salts for lithium ion batteries: LiPF6, LiBF4, LiDFOB, LiBOB, and LiTFSI. Journal of The Electrochemical Society, 2018. 165(2): p. A251.
40. Zhang, S.S., A review on electrolyte additives for lithium-ion batteries. Journal of Power Sources, 2006. 162(2): p. 1379-1394.
41. Haregewoin, A.M., A.S. Wotango, and B.-J. Hwang, Electrolyte additives for lithium ion battery electrodes: progress and perspectives. Energy & Environmental Science, 2016. 9(6): p. 1955-1988.
42. Zhang, S., K. Xu, and T. Jow, Enhanced performance of natural graphite in Li-ion battery by oxalatoborate coating. Journal of power sources, 2004. 129(2): p. 275-279.
43. Buechele, S., et al., Identification of redox shuttle generated in LFP/graphite and NMC811/graphite cells. Journal of The Electrochemical Society, 2023. 170(1): p. 010511.
44. Feuillade, G. and P. Perche, Ion-conductive macromolecular gels and membranes for solid lithium cells. Journal of Applied Electrochemistry, 1975. 5: p. 63-69.
45. Stephan, A.M., Review on gel polymer electrolytes for lithium batteries. European polymer journal, 2006. 42(1): p. 21-42.
46. Pakseresht, S., et al., Recent Advances in All-Solid-State Lithium–Oxygen Batteries: Challenges, Strategies, Future. Batteries, 2023. 9(7): p. 380.
47. Long, L., et al., Polymer electrolytes for lithium polymer batteries. Journal of Materials Chemistry A, 2016. 4(26): p. 10038-10069.
48. Croce, F., et al., Physical and chemical properties of nanocomposite polymer electrolytes. The Journal of Physical Chemistry B, 1999. 103(48): p. 10632-10638.
49. Zhou, D., et al., Polymer electrolytes for lithium-based batteries: advances and prospects. Chem, 2019. 5(9): p. 2326-2352.
50. He, W., et al., Carbonate-linked poly (ethylene oxide) polymer electrolytes towards high performance solid state lithium batteries. Electrochimica Acta, 2017. 225: p. 151-159.
51. Yang, H. and N. Wu, Ionic conductivity and ion transport mechanisms of solid‐state lithium‐ion battery electrolytes: A review. Energy Science & Engineering, 2022. 10(5): p. 1643-1671.
52. Brooks, D.J., et al., Atomistic description of ionic diffusion in PEO–LiTFSI: Effect of temperature, molecular weight, and ionic concentration. Macromolecules, 2018. 51(21): p. 8987-8995.
53. Zhao, Y., et al., Solid polymer electrolytes with high conductivity and transference number of Li ions for Li‐based rechargeable batteries. Advanced science, 2021. 8(7): p. 2003675.
54. Bresser, D., et al., Decoupling segmental relaxation and ionic conductivity for lithium-ion polymer electrolytes. Molecular Systems Design & Engineering, 2019. 4(4): p. 779-792.
55. Goodenough, J.B., Ceramic solid electrolytes. Solid State Ionics, 1997. 94(1-4): p. 17-25.
56. Liu, J., et al., Review of the developments and difficulties in inorganic solid-state electrolytes. Materials, 2023. 16(6): p. 2510.
57. Kim, K.J., et al., Solid‐state Li–metal batteries: challenges and horizons of oxide and sulfide solid electrolytes and their interfaces. Advanced Energy Materials, 2021. 11(1): p. 2002689.
58. Xi, G., et al., Polymer‐based solid electrolytes: material selection, design, and application. Advanced Functional Materials, 2021. 31(9): p. 2007598.
59. Xiao, J., et al., NaSICON-type materials for lithium-ion battery applications: Progress and challenges. Nano Energy, 2024: p. 109730.
60. Feng, W., Y. Zhao, and Y. Xia, Solid interfaces for the garnet electrolytes. Advanced Materials, 2024. 36(15): p. 2306111.
61. Wang, C., et al., Garnet-type solid-state electrolytes: materials, interfaces, and batteries. Chemical reviews, 2020. 120(10): p. 4257-4300.
62. Croce, F., et al., Role of the ceramic fillers in enhancing the transport properties of composite polymer electrolytes. Electrochimica Acta, 2001. 46(16): p. 2457-2461.
63. Austin Suthanthiraraj, S. and M. Johnsi, Nanocomposite polymer electrolytes. Ionics, 2017. 23: p. 2531-2542.
64. Rulev, A.Y., Aza-Michael reaction: achievements and prospects. Russian Chemical Reviews, 2011. 80(3): p. 197.
65. Wang, J., et al., Facile Assembly of C–N Bond-Containing Polymer Electrolytes Enabled by Lithium Salt-Catalyzed Aza-Michael Addition. Macromolecules, 2023. 56(6): p. 2484-2493.
66. Wang, J., et al., Amine-acrylate Michael addition: a versatile platform for fabrication of polymer electrolytes with varied cross-linked networks. ACS Applied Polymer Materials, 2024. 6(4): p. 2041-2048.
67. Brazel, C.S. and S.L. Rosen, Fundamental principles of polymeric materials. 2012: John Wiley & Sons.
68. Merle, G., M. Wessling, and K. Nijmeijer, Anion exchange membranes for alkaline fuel cells: A review. Journal of Membrane Science, 2011. 377(1-2): p. 1-35.
69. Nguyen, H.T., et al., Facile Li+ Transport in Interpenetrating O‐and F‐Containing Polymer Networks for Solid‐State Lithium Batteries. Advanced Functional Materials, 2023. 33(12): p. 2213469.
70. Tahneh, A.N., et al., Crosslinked natural hydrogels for drug delivery systems. Journal of Composites and Compounds, 2022. 4(11): p. 109-123.
71. Li, J., et al., The double-sided roles of difluorooxalatoborate contained electrolyte salts in electrochemical energy storage devices: A review. Chinese Chemical Letters, 2024: p. 110220.
72. Liu, S., et al., LiFSI and LiDFBOP dual-salt electrolyte reinforces the solid electrolyte interphase on a lithium metal anode. ACS Applied Materials & Interfaces, 2020. 12(30): p. 33719-33728.
73. Liu, W., et al., Ionic conductivity enhancement of polymer electrolytes with ceramic nanowire fillers. Nano letters, 2015. 15(4): p. 2740-2745.
74. Xue, Z., D. He, and X. Xie, Poly (ethylene oxide)-based electrolytes for lithium-ion batteries. Journal of Materials Chemistry A, 2015. 3(38): p. 19218-19253.
75. Li, Y. and H. Wang, Composite solid electrolytes with NASICON-type LATP and PVdF–HFP for solid-state lithium batteries. Industrial & Engineering Chemistry Research, 2021. 60(3): p. 1494-1500.
76. Gao, J., et al., Single-ion conducting polymer electrolytes as a key jigsaw piece for next-generation battery applications. Chemical science, 2021. 12(40): p. 13248-13272.
77. Evans, J., C.A. Vincent, and P.G. Bruce, Electrochemical measurement of transference numbers in polymer electrolytes. Polymer, 1987. 28(13): p. 2324-2328.
78. Bruce, P.G. and C.A. Vincent, Steady state current flow in solid binary electrolyte cells. Journal of electroanalytical chemistry and interfacial electrochemistry, 1987. 225(1-2): p. 1-17.
79. Doyle, M., T.F. Fuller, and J. Newman, The importance of the lithium ion transference number in lithium/polymer cells. Electrochimica Acta, 1994. 39(13): p. 2073-2081.
80. Magar, H.S., R.Y. Hassan, and A. Mulchandani, Electrochemical impedance spectroscopy (EIS): Principles, construction, and biosensing applications. Sensors, 2021. 21(19): p. 6578.
81. Sångeland, C., et al., Probing the interfacial chemistry of solid-state lithium batteries. Solid State Ionics, 2019. 343: p. 115068.
82. Choi, W., et al., Modeling and applications of electrochemical impedance spectroscopy (EIS) for lithium-ion batteries. Journal of Electrochemical Science and Technology, 2020. 11(1): p. 1-13.
83. Iurilli, P., C. Brivio, and V. Wood, On the use of electrochemical impedance spectroscopy to characterize and model the aging phenomena of lithium-ion batteries: a critical review. Journal of Power Sources, 2021. 505: p. 229860.
84. Sarkar, S. and V. Thangadurai, Critical current densities for high-performance all-solid-state Li-metal batteries: fundamentals, mechanisms, interfaces, materials, and applications. ACS Energy Letters, 2022. 7(4): p. 1492-1527.
85. Lu, Y., et al., Critical current density in solid‐state lithium metal batteries: mechanism, influences, and strategies. Advanced Functional Materials, 2021. 31(18): p. 2009925.
86. Mohammed, A. and A. Abdullah. Scanning electron microscopy (SEM): A review. in Proceedings of the 2018 international conference on hydraulics and pneumatics—HERVEX, Băile Govora, Romania. 2018.
87. Vernon-Parry, K.D., Scanning electron microscopy: an introduction. III-Vs review, 2000. 13(4): p. 40-44.
88. Zhou, W., et al., Fundamentals of scanning electron microscopy (SEM). Scanning microscopy for nanotechnology: techniques and applications, 2007: p. 1-40.
89. Ismail, A.A., F.R. van de Voort, and J. Sedman, Fourier transform infrared spectroscopy: principles and applications, in Techniques and instrumentation in analytical chemistry. 1997, Elsevier. p. 93-139.
90. Dutta, A., Fourier transform infrared spectroscopy. Spectroscopic methods for nanomaterials characterization, 2017: p. 73-93.
91. Coats, A. and J. Redfern, Thermogravimetric analysis. A review. Analyst, 1963. 88(1053): p. 906-924.
92. Saadatkhah, N., et al., Experimental methods in chemical engineering: Thermogravimetric analysis—TGA. The Canadian Journal of Chemical Engineering, 2020. 98(1): p. 34-43.
93. Sgreccia, E., et al., Mechanical properties of proton-conducting sulfonated aromatic polymer membranes: Stress–strain tests and dynamical analysis. Journal of Power Sources, 2010. 195(23): p. 7770-7775.
94. Artiaga, R. and A. García-Diez, Fundamentals of DMA. 2005.
95. Imani, M., et al., Monitoring of polyethylene glycoldiacrylate-based hydrogel formation by real time NMR spectroscopy. 2007.
96. Kerner, M., et al., Thermal stability and decomposition of lithium bis (fluorosulfonyl) imide (LiFSI) salts. Rsc Advances, 2016. 6(28): p. 23327-23334.
97. Alaneed, R., et al., Network formation by aza‐Michael addition of primary amines to vinyl end groups of enzymatically synthesized poly (glycerol adipate). Polymer International, 2021. 70(1): p. 135-144.
98. Le Nguyen, M., et al., Synergistic combination of ether-linkage and polymer-in-salt for electrolytes with facile Li+ conducting and high stability in solid-state lithium batteries. Energy Storage Materials, 2024. 65: p. 103178.
校內:2030-08-14公開