簡易檢索 / 詳目顯示

研究生: 林秦竹
Lin, Cin-Jhu
論文名稱: Aza-Michael加成反應合成之高電位高分子電解質於鋰電池之應用
High-Voltage Polymer Electrolyte Synthesized from Aza-Michael Addition Reaction for Lithium Batteries
指導教授: 鄧熙聖
Teng, Hsi-Sheng
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 130
中文關鍵詞: 鋰金屬電池固態電解質Aza-Michael加成反應互穿式電解質
外文關鍵詞: Lithium metal battery, Solid-state electrolytes, Aza-Michael Addition Reaction, Interpenetrating Polymer Network Electrolyte
相關次數: 點閱:6下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要 I High-Voltage Polymer Electrolyte Synthesized from Aza-Michael Addition Reaction for Lithium Batteries II 致謝 XXV 目錄 XXVI 圖目錄 XXX 表目錄 XXXIV 第一章、緒論 1 1.1 鋰電池的發展概述 1 1.2 鋰離子電池構造 3 1.3 鋰離子電池工作原理 4 1.4 正極材料 6 1.4.1 層狀結構(layered) 6 1.4.2 尖晶石結構(spinel) 8 1.4.3 橄欖石結構(olivine) 9 1.5 負極材料 11 1.5.1 碳基負極(Carbon-based anodes) 11 1.5.2氧化物負極(Oxide-based anodes) 12 1.5.3 合金型負極(Alloy anodes) 13 1.5.4 鋰金屬負極(Lithium metal anodes) 14 1.6 電解質 16 1.6.1 液態電解質(Liquid electrolytes) 16 1.6.2 膠態電解質(Gel Polymer Electrolyte) 20 1.6.3 全固態電解質(Solid-State Electrolytes) 23 1.7 研究動機與目的 31 第二章、理論說明與文獻回顧 32 2.1 Aza-Michael Addition Reaction 32 2.2 互穿式高分子電解質,Interpenetrating polymer network electrolytes, IPN 33 2.3 雙鋰鹽電解質系統(Dual-lithium salt system) 35 2.4 聚(偏二氟乙烯-co-六氟丙烯),PVDF-HFP 36 2.5 導離子度(Ionic Conductivity) 38 2.6 鋰離子遷移常數(Lithium-ion transference number, tLi+) 39 2.7 電化學阻抗圖譜(Electrochemical Impedance Spectroscopy) 42 2.8 臨界電流密度 (Critical current density, CCD) 44 第三章、實驗方法與儀器原理介紹 47 3.1 實驗藥品與用品 47 3.2 實驗儀器設備 48 3.3 LFP正極極片製作 48 3.4 Aza-Michael Synthesized Polymer Electrolyte(AME)電解質之製作 50 3.5 鈕扣型電池之組裝 51 3.6 實驗分析儀器之原理介紹 52 3.6.1 掃描式電子顯微鏡 (Scanning Electron Microscope) 52 3.6.2 傅立葉轉換紅外光譜儀 (Fourier-transform infrared spectroscopy) 54 3.6.3 熱重分析儀 (Thermogravimetric analyzer) 55 3.6.4 動態機械分析 (Dynamic mechanical analysis) 57 3-7 電化學測試 59 3.7.1 導離子度 (Ionic conductivity, σ) 59 3.7.2 鋰離子遷移常數 (Lithium transference number, tLi+) 59 3.7.3 線性掃描伏安法 (Linear sweep voltammetry, LSV) 60 3.7.4 臨界電流密度 (Critical current density, CCD) 60 3.7.5 電池倍率及循環充放電性能測試 61 第四章、結果與討論 62 4.1 固態電解質 63 4.1.1反應機制 63 4.1.2 FTIR 64 4.1.3 Raman 67 4.2 AME基本電化學測試 68 4.2.1 導離子度 68 4.2.2 鋰離子遷移常數 71 4.2.3 電化學窗口 72 4.3 AME熱穩定性與機械強度測試 73 4.3.1 熱穩定性測試 73 4.3.2 機械強度測試 75 4.4 SPE與鋰金屬界面穩定性測試 76 4.4.1 界面相容性測試 76 4.4.2 CCD測試 79 4.5 全電池性能測試 81 4.5.1 倍率充放電性能測試 81 4.5.2 循環充放電性能測試 83 4.5.3 SEM觀察循環後的鋰金屬表面 86 第五章、結論 88 參考文獻 89

    1. Bhatt, M.D. and C. O'Dwyer, Recent progress in theoretical and computational investigations of Li-ion battery materials and electrolytes. Physical Chemistry Chemical Physics, 2015. 17(7): p. 4799-4844.
    2. Julien, C., et al., Lithium batteries. 2016: Springer.
    3. Whittingham, M.S., Electrical energy storage and intercalation chemistry. Science, 1976. 192(4244): p. 1126-1127.
    4. Mizushima, K., et al., LixCoO2 (0< x<-1): A new cathode material for batteries of high energy density. Materials Research Bulletin, 1980. 15(6): p. 783-789.
    5. Winter, M., B. Barnett, and K. Xu, Before Li ion batteries. Chemical reviews, 2018. 118(23): p. 11433-11456.
    6. Yoshino, A., Development of the lithium-ion battery and recent technological trends, in Lithium-ion batteries. 2014, Elsevier. p. 1-20.
    7. Tarascon, J.-M. and M. Armand, Issues and challenges facing rechargeable lithium batteries. nature, 2001. 414(6861): p. 359-367.
    8. Sun, L., et al., Recent progress and future perspective on practical silicon anode-based lithium ion batteries. Energy Storage Materials, 2022. 46: p. 482-502.
    9. Li, M., et al., 30 years of lithium‐ion batteries. Advanced materials, 2018. 30(33): p. 1800561.
    10. Zhu, P., et al., A review of current collectors for lithium-ion batteries. Journal of Power Sources, 2021. 485: p. 229321.
    11. Scrosati, B. and J. Garche, Lithium batteries: Status, prospects and future. Journal of power sources, 2010. 195(9): p. 2419-2430.
    12. Bazito, F.F. and R.M. Torresi, Cathodes for lithium ion batteries: the benefits of using nanostructured materials. Journal of the Brazilian Chemical Society, 2006. 17: p. 627-642.
    13. Li, J., et al., Structural origin of the high-voltage instability of lithium cobalt oxide. Nature nanotechnology, 2021. 16(5): p. 599-605.
    14. Zou, L., et al., Solid–liquid interfacial reaction trigged propagation of phase transition from surface into bulk lattice of Ni-rich layered cathode. Chemistry of Materials, 2018. 30(20): p. 7016-7026.
    15. Fan, Q., et al., Mixed-conducting interlayer boosting the electrochemical performance of Ni-rich layered oxide cathode materials for lithium ion batteries. Journal of Power Sources, 2019. 421: p. 91-99.
    16. Zheng, J., et al., Boosting cell performance of LiNi0. 8Co0. 15Al0. 05O2 via surface structure design. Small, 2019. 15(50): p. 1904854.
    17. Whittingham, M.S., Lithium batteries and cathode materials. Chemical reviews, 2004. 104(10): p. 4271-4302.
    18. Kebede, M.A., An investigation of the lattice parameter and micro-strain behaviour of LiMn2O4 coated with LiMn1. 5Ni0. 5O4 to attain high-rate capability and cycling stability. Journal of Energy Storage, 2023. 72: p. 108602.
    19. Manthiram, A., A reflection on lithium-ion battery cathode chemistry. Nature communications, 2020. 11(1): p. 1550.
    20. Miao, J., Review on electrode degradation at fast charging of Li-ion and Li metal batteries from a kinetic perspective. Electrochem, 2023. 4(2): p. 156-180.
    21. Yang, L., et al., A high-rate capability LiFePO 4/C cathode achieved by the modulation of the band structures. Journal of Materials Chemistry A, 2021. 9(43): p. 24686-24694.
    22. Wu, Y.-P., E. Rahm, and R. Holze, Carbon anode materials for lithium ion batteries. Journal of power sources, 2003. 114(2): p. 228-236.
    23. Azuma, H., et al., Advanced carbon anode materials for lithium ion cells. Journal of power sources, 1999. 81: p. 1-7.
    24. Molaiyan, P., et al., Recent progress in biomass-derived carbon materials for Li-ion and Na-ion batteries—A review. Batteries, 2023. 9(2): p. 116.
    25. Chen, C., et al., Studies of Mg-substituted Li4− xMgxTi5O12 spinel electrodes (0≤ x≤ 1) for lithium batteries. Journal of the Electrochemical Society, 2001. 148(1): p. A102.
    26. Chen, J.S., et al., Graphene-wrapped TiO 2 hollow structures with enhanced lithium storage capabilities. Nanoscale, 2011. 3(5): p. 2158-2161.
    27. Yi, T.-F., et al., Recent development and application of Li4Ti5O12 as anode material of lithium ion battery. Journal of Physics and Chemistry of Solids, 2010. 71(9): p. 1236-1242.
    28. Obrovac, M.N. and V.L. Chevrier, Alloy negative electrodes for Li-ion batteries. Chemical reviews, 2014. 114(23): p. 11444-11502.
    29. Chan, C.K., et al., High-performance lithium battery anodes using silicon nanowires. Nature nanotechnology, 2008. 3(1): p. 31-35.
    30. Cheng, X.-B., et al., Toward safe lithium metal anode in rechargeable batteries: a review. Chemical reviews, 2017. 117(15): p. 10403-10473.
    31. Heine, J., et al., Fluoroethylene carbonate as electrolyte additive in tetraethylene glycol dimethyl ether based electrolytes for application in lithium ion and lithium metal batteries. Journal of the Electrochemical Society, 2015. 162(6): p. A1094.
    32. Chen, L., et al., Lithium metal protected by atomic layer deposition metal oxide for high performance anodes. Journal of Materials Chemistry A, 2017. 5(24): p. 12297-12309.
    33. Lin, D., Y. Liu, and Y. Cui, Reviving the lithium metal anode for high-energy batteries. Nature nanotechnology, 2017. 12(3): p. 194-206.
    34. Xu, K., Electrolytes and interphases in Li-ion batteries and beyond. Chemical reviews, 2014. 114(23): p. 11503-11618.
    35. Xu, K., Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chemical reviews, 2004. 104(10): p. 4303-4418.
    36. Chaugule, A.A., A.H. Tamboli, and H. Kim, Ionic liquid as a catalyst for utilization of carbon dioxide to production of linear and cyclic carbonate. Fuel, 2017. 200: p. 316-332.
    37. Zinigrad, E., et al., On the thermal stability of LiPF6. Thermochimica acta, 2005. 438(1-2): p. 184-191.
    38. Zhang, S.S., K. Xu, and T.R. Jow, Study of LiBF4 as an electrolyte salt for a Li-ion battery. Journal of the Electrochemical society, 2002. 149(5): p. A586.
    39. Parimalam, B.S. and B.L. Lucht, Reduction reactions of electrolyte salts for lithium ion batteries: LiPF6, LiBF4, LiDFOB, LiBOB, and LiTFSI. Journal of The Electrochemical Society, 2018. 165(2): p. A251.
    40. Zhang, S.S., A review on electrolyte additives for lithium-ion batteries. Journal of Power Sources, 2006. 162(2): p. 1379-1394.
    41. Haregewoin, A.M., A.S. Wotango, and B.-J. Hwang, Electrolyte additives for lithium ion battery electrodes: progress and perspectives. Energy & Environmental Science, 2016. 9(6): p. 1955-1988.
    42. Zhang, S., K. Xu, and T. Jow, Enhanced performance of natural graphite in Li-ion battery by oxalatoborate coating. Journal of power sources, 2004. 129(2): p. 275-279.
    43. Buechele, S., et al., Identification of redox shuttle generated in LFP/graphite and NMC811/graphite cells. Journal of The Electrochemical Society, 2023. 170(1): p. 010511.
    44. Feuillade, G. and P. Perche, Ion-conductive macromolecular gels and membranes for solid lithium cells. Journal of Applied Electrochemistry, 1975. 5: p. 63-69.
    45. Stephan, A.M., Review on gel polymer electrolytes for lithium batteries. European polymer journal, 2006. 42(1): p. 21-42.
    46. Pakseresht, S., et al., Recent Advances in All-Solid-State Lithium–Oxygen Batteries: Challenges, Strategies, Future. Batteries, 2023. 9(7): p. 380.
    47. Long, L., et al., Polymer electrolytes for lithium polymer batteries. Journal of Materials Chemistry A, 2016. 4(26): p. 10038-10069.
    48. Croce, F., et al., Physical and chemical properties of nanocomposite polymer electrolytes. The Journal of Physical Chemistry B, 1999. 103(48): p. 10632-10638.
    49. Zhou, D., et al., Polymer electrolytes for lithium-based batteries: advances and prospects. Chem, 2019. 5(9): p. 2326-2352.
    50. He, W., et al., Carbonate-linked poly (ethylene oxide) polymer electrolytes towards high performance solid state lithium batteries. Electrochimica Acta, 2017. 225: p. 151-159.
    51. Yang, H. and N. Wu, Ionic conductivity and ion transport mechanisms of solid‐state lithium‐ion battery electrolytes: A review. Energy Science & Engineering, 2022. 10(5): p. 1643-1671.
    52. Brooks, D.J., et al., Atomistic description of ionic diffusion in PEO–LiTFSI: Effect of temperature, molecular weight, and ionic concentration. Macromolecules, 2018. 51(21): p. 8987-8995.
    53. Zhao, Y., et al., Solid polymer electrolytes with high conductivity and transference number of Li ions for Li‐based rechargeable batteries. Advanced science, 2021. 8(7): p. 2003675.
    54. Bresser, D., et al., Decoupling segmental relaxation and ionic conductivity for lithium-ion polymer electrolytes. Molecular Systems Design & Engineering, 2019. 4(4): p. 779-792.
    55. Goodenough, J.B., Ceramic solid electrolytes. Solid State Ionics, 1997. 94(1-4): p. 17-25.
    56. Liu, J., et al., Review of the developments and difficulties in inorganic solid-state electrolytes. Materials, 2023. 16(6): p. 2510.
    57. Kim, K.J., et al., Solid‐state Li–metal batteries: challenges and horizons of oxide and sulfide solid electrolytes and their interfaces. Advanced Energy Materials, 2021. 11(1): p. 2002689.
    58. Xi, G., et al., Polymer‐based solid electrolytes: material selection, design, and application. Advanced Functional Materials, 2021. 31(9): p. 2007598.
    59. Xiao, J., et al., NaSICON-type materials for lithium-ion battery applications: Progress and challenges. Nano Energy, 2024: p. 109730.
    60. Feng, W., Y. Zhao, and Y. Xia, Solid interfaces for the garnet electrolytes. Advanced Materials, 2024. 36(15): p. 2306111.
    61. Wang, C., et al., Garnet-type solid-state electrolytes: materials, interfaces, and batteries. Chemical reviews, 2020. 120(10): p. 4257-4300.
    62. Croce, F., et al., Role of the ceramic fillers in enhancing the transport properties of composite polymer electrolytes. Electrochimica Acta, 2001. 46(16): p. 2457-2461.
    63. Austin Suthanthiraraj, S. and M. Johnsi, Nanocomposite polymer electrolytes. Ionics, 2017. 23: p. 2531-2542.
    64. Rulev, A.Y., Aza-Michael reaction: achievements and prospects. Russian Chemical Reviews, 2011. 80(3): p. 197.
    65. Wang, J., et al., Facile Assembly of C–N Bond-Containing Polymer Electrolytes Enabled by Lithium Salt-Catalyzed Aza-Michael Addition. Macromolecules, 2023. 56(6): p. 2484-2493.
    66. Wang, J., et al., Amine-acrylate Michael addition: a versatile platform for fabrication of polymer electrolytes with varied cross-linked networks. ACS Applied Polymer Materials, 2024. 6(4): p. 2041-2048.
    67. Brazel, C.S. and S.L. Rosen, Fundamental principles of polymeric materials. 2012: John Wiley & Sons.
    68. Merle, G., M. Wessling, and K. Nijmeijer, Anion exchange membranes for alkaline fuel cells: A review. Journal of Membrane Science, 2011. 377(1-2): p. 1-35.
    69. Nguyen, H.T., et al., Facile Li+ Transport in Interpenetrating O‐and F‐Containing Polymer Networks for Solid‐State Lithium Batteries. Advanced Functional Materials, 2023. 33(12): p. 2213469.
    70. Tahneh, A.N., et al., Crosslinked natural hydrogels for drug delivery systems. Journal of Composites and Compounds, 2022. 4(11): p. 109-123.
    71. Li, J., et al., The double-sided roles of difluorooxalatoborate contained electrolyte salts in electrochemical energy storage devices: A review. Chinese Chemical Letters, 2024: p. 110220.
    72. Liu, S., et al., LiFSI and LiDFBOP dual-salt electrolyte reinforces the solid electrolyte interphase on a lithium metal anode. ACS Applied Materials & Interfaces, 2020. 12(30): p. 33719-33728.
    73. Liu, W., et al., Ionic conductivity enhancement of polymer electrolytes with ceramic nanowire fillers. Nano letters, 2015. 15(4): p. 2740-2745.
    74. Xue, Z., D. He, and X. Xie, Poly (ethylene oxide)-based electrolytes for lithium-ion batteries. Journal of Materials Chemistry A, 2015. 3(38): p. 19218-19253.
    75. Li, Y. and H. Wang, Composite solid electrolytes with NASICON-type LATP and PVdF–HFP for solid-state lithium batteries. Industrial & Engineering Chemistry Research, 2021. 60(3): p. 1494-1500.
    76. Gao, J., et al., Single-ion conducting polymer electrolytes as a key jigsaw piece for next-generation battery applications. Chemical science, 2021. 12(40): p. 13248-13272.
    77. Evans, J., C.A. Vincent, and P.G. Bruce, Electrochemical measurement of transference numbers in polymer electrolytes. Polymer, 1987. 28(13): p. 2324-2328.
    78. Bruce, P.G. and C.A. Vincent, Steady state current flow in solid binary electrolyte cells. Journal of electroanalytical chemistry and interfacial electrochemistry, 1987. 225(1-2): p. 1-17.
    79. Doyle, M., T.F. Fuller, and J. Newman, The importance of the lithium ion transference number in lithium/polymer cells. Electrochimica Acta, 1994. 39(13): p. 2073-2081.
    80. Magar, H.S., R.Y. Hassan, and A. Mulchandani, Electrochemical impedance spectroscopy (EIS): Principles, construction, and biosensing applications. Sensors, 2021. 21(19): p. 6578.
    81. Sångeland, C., et al., Probing the interfacial chemistry of solid-state lithium batteries. Solid State Ionics, 2019. 343: p. 115068.
    82. Choi, W., et al., Modeling and applications of electrochemical impedance spectroscopy (EIS) for lithium-ion batteries. Journal of Electrochemical Science and Technology, 2020. 11(1): p. 1-13.
    83. Iurilli, P., C. Brivio, and V. Wood, On the use of electrochemical impedance spectroscopy to characterize and model the aging phenomena of lithium-ion batteries: a critical review. Journal of Power Sources, 2021. 505: p. 229860.
    84. Sarkar, S. and V. Thangadurai, Critical current densities for high-performance all-solid-state Li-metal batteries: fundamentals, mechanisms, interfaces, materials, and applications. ACS Energy Letters, 2022. 7(4): p. 1492-1527.
    85. Lu, Y., et al., Critical current density in solid‐state lithium metal batteries: mechanism, influences, and strategies. Advanced Functional Materials, 2021. 31(18): p. 2009925.
    86. Mohammed, A. and A. Abdullah. Scanning electron microscopy (SEM): A review. in Proceedings of the 2018 international conference on hydraulics and pneumatics—HERVEX, Băile Govora, Romania. 2018.
    87. Vernon-Parry, K.D., Scanning electron microscopy: an introduction. III-Vs review, 2000. 13(4): p. 40-44.
    88. Zhou, W., et al., Fundamentals of scanning electron microscopy (SEM). Scanning microscopy for nanotechnology: techniques and applications, 2007: p. 1-40.
    89. Ismail, A.A., F.R. van de Voort, and J. Sedman, Fourier transform infrared spectroscopy: principles and applications, in Techniques and instrumentation in analytical chemistry. 1997, Elsevier. p. 93-139.
    90. Dutta, A., Fourier transform infrared spectroscopy. Spectroscopic methods for nanomaterials characterization, 2017: p. 73-93.
    91. Coats, A. and J. Redfern, Thermogravimetric analysis. A review. Analyst, 1963. 88(1053): p. 906-924.
    92. Saadatkhah, N., et al., Experimental methods in chemical engineering: Thermogravimetric analysis—TGA. The Canadian Journal of Chemical Engineering, 2020. 98(1): p. 34-43.
    93. Sgreccia, E., et al., Mechanical properties of proton-conducting sulfonated aromatic polymer membranes: Stress–strain tests and dynamical analysis. Journal of Power Sources, 2010. 195(23): p. 7770-7775.
    94. Artiaga, R. and A. García-Diez, Fundamentals of DMA. 2005.
    95. Imani, M., et al., Monitoring of polyethylene glycoldiacrylate-based hydrogel formation by real time NMR spectroscopy. 2007.
    96. Kerner, M., et al., Thermal stability and decomposition of lithium bis (fluorosulfonyl) imide (LiFSI) salts. Rsc Advances, 2016. 6(28): p. 23327-23334.
    97. Alaneed, R., et al., Network formation by aza‐Michael addition of primary amines to vinyl end groups of enzymatically synthesized poly (glycerol adipate). Polymer International, 2021. 70(1): p. 135-144.
    98. Le Nguyen, M., et al., Synergistic combination of ether-linkage and polymer-in-salt for electrolytes with facile Li+ conducting and high stability in solid-state lithium batteries. Energy Storage Materials, 2024. 65: p. 103178.

    無法下載圖示 校內:2030-08-14公開
    校外:2030-08-14公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE