| 研究生: |
潘怡蓁 Pan, Yi-Chen |
|---|---|
| 論文名稱: |
先進菊池圖背景扣除技術與影像品質評估方法 Novel Background Subtraction Technique of Kikuchi Pattern and Image Quality Indexing Methods |
| 指導教授: |
郭瑞昭
Kuo, Jui-Chao |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 103 |
| 中文關鍵詞: | 低電壓背向散射電子繞射 、菊池圖背景 、均值法 、傅立葉轉換法 、3D曲面擬合法 |
| 外文關鍵詞: | low-energy EBSD, background of Kikuchi pattern, pattern averaging, Fourier transformation, 3D fitting |
| 相關次數: | 點閱:65 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來電子背向散射繞射技術(EBSD)經常運用於高變形量金屬材料、奈米材料上的分析,EBSD的空間解析度受限於掃描式電子顯微鏡(SEM)的電子束參數、電子束與試片交互作用體積、背向散射係數、原子序及試片厚度等影響。為了提升其空間解析度方法之一為降低電子束之加速電壓,然而降低電子束之加速電壓時,造成電子束與試片交互作用體積會縮小。因此,背向散射電子的數量與強度皆降低,而造成信噪比降低,致使菊池線圖之影像品質降低,導致能被軟體鑑定的菊池線數量減少,不利於後續分析。
本論文研究重點為如何在低信噪比下提升菊池線圖影像品質,論文內容主要分為三個部分,首先以影像處理方法,經由調整菊池圖之對比、清晰度以及雜訊等三種影響影像品質方法,藉此評估其影響,其次菊池圖背景扣除,有助於提升菊池線圖影像品質,因此提出三種菊池圖背景生成技術,最後評估菊池圖背景扣除後之最終菊池圖的品質,及優化CCD參數設定(曝光時間(exposure time)以及增益(gain))之最佳數值。
本論文利用三種菊池圖背景生成技術,均值法背景、傅立葉背景以及3D擬合背景,結合多種影像處理技術對原始菊池圖進行處理,將兩者進行扣除後,以三種客觀影像品質評估法為扣除背景後之菊池圖進行品質評分,比較均值法背景、傅立葉背景、3D擬合背景之間的差異以及三種菊池圖背景扣除後生成之菊池圖品質,歸納出優化菊池圖品質之最佳方法,並測試該方法於高加速電壓與低加速電壓下之應用。
研究結果顯示,當利用歸一化對15kV、5kV加速電壓下之原始菊池圖進行處理,並採用均值法、傅立葉以及3D擬合背景生成技術,歸一化菊池圖進行三種背景扣除後,15kV時IQ值分別為12993、10677、18652,Tenengrad variance值為5.14x106、2.92x107、7.33x107,SSEQ值為35.62、35.02、34.69;5kV時IQ值分別為4921、13699、24062,Tenengrad variance值為2.49x106、4.90x106、3.41x107,SSEQ值為18.54、19.68、18.92。不論是高加速電壓或低加速電壓的情況下,使用3D擬合菊池背景扣除技術所得之菊池圖品質皆優於均值法與傅立葉背景扣除技術。若在低加速電壓(5kV)的情況下使用3D擬合菊池圖背景扣除技術,CCD參數曝光時間以及增益值分別為500毫秒與5%,此參數下所生成之最終菊池圖品質最佳,IQ值為13211、Tenengrad variance值為3.41107、SSEQ值為18.92。
The quality of Kikuchi pattern is strongly influenced by accelerating voltage of electron beam. To improve the quality of Kikuchi pattern with low signal-to-noise ratio, image processing and background subtraction were applied. In this study, three background generation methods were used, including pattern averaging background, Fourier transformation background, and 3D fitting background. Among them, 3D fitting background is a novel method proposed. After background subtraction, the IQ (image quality) value of Kikuchi pattern by 3D fitting background subtraction is 24062, Tenengrad variance is 3.41107, and SSEQ is 18.92. The quality of Kikuchi pattern processed by 3D fitting background is better than that processed by Fourier transformation background and pattern averaging background subtraction at 5kV. For the case of 5kV, the best parameter setting for gain and exposure time are 5% and 500ms, respectively.
1. D. Chen and J.-C. Kuo, The effect of atomic mass on the physical spatial resolution in EBSD. Microscopy and Microanalysis. 19: p. 4-7, 2013.
2. F. Humphreys, Review grain and subgrain characterisation by electron backscatter diffraction. Journal of materials science. 36: p. 3833-3854, 2001.
3. D. Chen, J.-C. Kuo, and W.-T. Wu, Effect of microscopic parameters on EBSD spatial resolution. Ultramicroscopy. 111: p. 1488-1494, 2011.
4. S. Zaefferer, On the formation mechanisms, spatial resolution and intensity of backscatter Kikuchi patterns. Ultramicroscopy. 107: p. 254-266, 2007.
5. C. Harland, P. Akhter, and J. Venables, Accurate microcrystallography at high spatial resolution using electron back-scattering patterns in a field emission gun scanning electron microscope. Journal of Physics E: Scientific Instruments. 14: p. 175, 1981.
6. S. Ren, E. Kenik, K. Alexander, and A. Goyal, Exploring spatial resolution in electron back-scattered diffraction experiments via Monte Carlo simulation. Microscopy and Microanalysis. 4: p. 15-22, 1998.
7. T.B. Britton, V.S. Tong, J. Hickey, A. Foden, and A.J. Wilkinson, AstroEBSD: exploring new space in pattern indexing with methods launched from an astronomical approach. Journal of Applied Crystallography. 51: p. 1525-1534, 2018.
8. S. Nishikawa and S. Kikuchi, Diffraction of Cathode Rays by Calcite. Nature. 122: p. 726-726, 1928.
9. J. Venables and C. Harland, Electron back-scattering patterns—A new technique for obtaining crystallographic information in the scanning electron microscope. Philosophical Magazine. 27: p. 1193-1200, 1973.
10. N.K. Lassen, D.J. Jensen, and K. Conradsen, Image processing procedures for analysis of electron back scattering patterns. Scanning microscopy. 6: p. 115-121, 1992.
11. A. Winkelmann, C. Trager-Cowan, F. Sweeney, A.P. Day, and P. Parbrook, Many-beam dynamical simulation of electron backscatter diffraction patterns. Ultramicroscopy. 107: p. 414-421, 2007.
12. N. Senthilkumaran and J. Thimmiaraja. Histogram equalization for image enhancement using MRI brain images. in 2014 World Congress on Computing and Communication Technologies. 2014. IEEE.
13. S.-C. Huang, F.-C. Cheng, and Y.-S. Chiu, Efficient contrast enhancement using adaptive gamma correction with weighting distribution. IEEE transactions on image processing. 22: p. 1032-1041, 2012.
14. G. Raju and M.S. Nair, A fast and efficient color image enhancement method based on fuzzy-logic and histogram. AEU-International Journal of electronics and communications. 68: p. 237-243, 2014.
15. A. Łoza, D.R. Bull, P.R. Hill, and A.M. Achim, Automatic contrast enhancement of low-light images based on local statistics of wavelet coefficients. Digital Signal Processing. 23: p. 1856-1866, 2013.
16. D.J. Jobson, Z.-u. Rahman, and G.A. Woodell, A multiscale retinex for bridging the gap between color images and the human observation of scenes. IEEE Transactions on Image processing. 6: p. 965-976, 1997.
17. A.J. Wilkinson and D.J. Dingley, Quantitative deformation studies using electron back scatter patterns. Acta Metallurgica et Materialia. 39: p. 3047-3055, 1991.
18. J. Sukkau and R.A. Schwarzer, Reconstruction of Kikuchi patterns by intensity-enhanced Radon transformation. Pattern Recognition Letters. 33: p. 739-743, 2012.
19. G. Yue, C. Hou, K. Gu, and N. Ling, No reference image blurriness assessment with local binary patterns. Journal of Visual Communication and Image Representation. 49: p. 382-391, 2017.
20. Z. Wang, A.C. Bovik, H.R. Sheikh, and E.P. Simoncelli, Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process. 13: p. 600-12, 2004.
21. K. Simonyan and A. Zisserman, Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556. 2014.
22. S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards real-time object detection with region proposal networks. in Advances in neural information processing systems. p.91-99 2015.
23. A.K. Moorthy and A.C. Bovik, Blind image quality assessment: From natural scene statistics to perceptual quality. IEEE transactions on Image Processing. 20: p. 3350-3364, 2011.
24. M.A. Saad, A.C. Bovik, and C. Charrier, Blind image quality assessment: A natural scene statistics approach in the DCT domain. IEEE transactions on Image Processing. 21: p. 3339-3352, 2012.
25. C. Li, A.C. Bovik, and X. Wu, Blind image quality assessment using a general regression neural network. IEEE Transactions on neural networks. 22: p. 793-799, 2011.
26. A. Mittal, A.K. Moorthy, and A.C. Bovik, No-reference image quality assessment in the spatial domain. IEEE Transactions on image processing. 21: p. 4695-4708, 2012.
27. T.M. Rampton, S.I. Wright, M.P. Miles, E.R. Homer, R.H. Wagoner, and D.T. Fullwood, Improved twin detection via tracking of individual Kikuchi band intensity of EBSD patterns. Ultramicroscopy. 185: p. 5-14, 2018.
28. K. Kunze, S.I. Wright, B.L. Adams, and D.J. Dingley, Advances in Automatic EBSP Single Orientation Measurements. Textures and Microstructures. 20: p.41-54, 1993.
29. S.I. Wright and M.M. Nowell, EBSD image quality mapping. Microscopy and microanalysis. 12: p. 72-84, 2006.
30. S.-I. Ao and L. Gelman, Advances in electrical engineering and computational science. 2009: Springer, Germany.
31. H. Du Buf, Automatic diatom identification. Vol. 51. 2002: World Scientific.
32. J.L. Pech-Pacheco, G. Cristóbal, J. Chamorro-Martinez, and J. Fernández-Valdivia. Diatom autofocusing in brightfield microscopy: a comparative study. in Proceedings 15th International Conference on Pattern Recognition. ICPR-2000. 2000. IEEE.
33. L. Liu, B. Liu, H. Huang, and A.C. Bovik, No-reference image quality assessment based on spatial and spectral entropies. Signal Processing: Image Communication. 29: p. 856-863, 2014.
34. R.C. Gonzalez and R.E. Woods, Digital Image Processing. 2008: Pearson/Prentice Hall, London.
35. Y. Ren, Z. Ying, T.H. Li, and G. Li, LECARM: low-light image enhancement using the camera response model. IEEE Transactions on Circuits and Systems for Video Technology. 29: p. 968-981, 2018.
36. S. Muniyappan, A. Allirani, and S. Saraswathi. A novel approach for image enhancement by using contrast limited adaptive histogram equalization method. in 2013 Fourth International Conference on Computing, Communications and Networking Technologies (ICCCNT). 2013. IEEE.
37. J. Ma, X. Fan, S.X. Yang, X. Zhang, and X. Zhu, Contrast limited adaptive histogram equalization based fusion for underwater image enhancement. Preprints. 127, 2017.
38. T.A. Gallagher, A.J. Nemeth, and L. Hacein-Bey, An introduction to the Fourier transform: relationship to MRI. American journal of roentgenology. 190: p. 1396-1405, 2008.
39. S.J. Balch and G.T. Thompson, An efficient algorithm for polynomial surface fitting. Computers & Geosciences. 15: p. 107-119, 1989.
40. A. Bhandari, A. Kumar, and G. Singh, Improved knee transfer function and gamma correction based method for contrast and brightness enhancement of satellite image. AEU-International Journal of Electronics and Communications. 69: p. 579-589, 2015.
41. O.C. Wells, Comparison of different models for the generation of electron backscattering patterns in the scanning electron microscope. Scanning. 21: p. 368-371, 1999.
42. A. Deal, T. Hooghan, and A. Eades, Energy-filtered electron backscatter diffraction. Ultramicroscopy. 108: p. 116-125, 2008.
43. Z.L. Wang, Elastic and inelastic scattering in electron diffraction and imaging. 1995: Plenum Press, New York.
44. S. Zaefferer, A critical review of orientation microscopy in SEM and TEM. Crystal Research and Technology. 46: p. 607-628, 2011.
45. C.-W. Kuo, J.-C. Kuo, and S.-C. Wang, Resolution of transmission electron backscatter diffraction in aluminum and silver: Effect of the atomic number. Ultramicroscopy. 193: p. 126-136, 2018.
46. J.I. Goldstein, D.E. Newbury, J.R. Michael, N.W. Ritchie, J.H.J. Scott, and D.C. Joy, Scanning electron microscopy and X-ray microanalysis. 2017: Springer, Germany.
47. A. Winkelmann, Principles of depth‐resolved Kikuchi pattern simulation for electron backscatter diffraction. Journal of microscopy. 239: p. 32-45, 2010.
校內:2025-08-10公開