簡易檢索 / 詳目顯示

研究生: 郭軒廷
Kuo, Hsuan-Ting
論文名稱: 超穎聚焦鏡於多光譜影像之研究與應用
Multispectral imaging with a flat focusing meta-mirror
指導教授: 吳品頡
Wu, Pin-Chieh
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 58
中文關鍵詞: 斜聚焦超穎聚焦鏡多波長共振高光譜影像
外文關鍵詞: Multispectral imaging, Distributed Bragg reflector, Reflective imager
相關次數: 點閱:126下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 高光譜影像(Hyperspectral imaging)在許多領域都有重要的應用,例如物質辨識、遙測(telemetry)等領域,而過去已開發的高光譜成像儀有些需要掃描並無法進行即時拍攝,或是因為高光譜成像儀需要使用到大量的光學元件導致重量過重,無法應用於太空遙測中。為了解決以上問題,本論文利用多波長共振與斜向超穎聚焦鏡的技術開發出具有即時快照(snapshot)與輕薄的平面式透鏡成像元件。
    本論文利用多層膜反射鏡基板與銀金屬結構產生多波長共振,可以同時產生多個高品質因子的共振峰值,並且利用基板與銀棒間的介電質厚度可以控制共振波長的位置。結合幾何相位調製方式,可以在所有共振波段產生高效率圓偏振轉換效率並同時控制所有波長的相位,搭配斜聚焦鏡的相位設計原理,設計出在不同共振波長會有不同出射角度的斜向超穎聚焦鏡。由於離散的共振峰值與小NA的透鏡設計,在斜向聚焦平面上可以找到讓所有共振峰值都同時成像並且幾乎不重疊的影像平面。此研究成果展現出將超穎聚焦鏡於快照式高光譜影像發展與應用的可行性。

    In this paper, an array of Ag nanoantennas standing on a distributed Bragg reflector (DBR) substrate are used to generate multi-wavelength resonance, which can bring multiple high-Q factor resonance peaks across the spectrum of interested. The spectral position of the resonance wavelengths can be adjusted by tuning the dielectric spacer thickness between the plasmonic nanoantennas and DBR substrate. Combined with the geometric phase method, the multi-resonant metasurface is capable of modulating the phase shift at individual wavelengths with high circular polarization conversion efficiency. With the design of geometric phase based multi-resonant metasurface, an off-axis meta-mirror is realized. Multiple focal spots can be obtained on a tilted focal plane when a broadband light source is illuminated, which is originally from the intrinsic dispersion effect of the metasurface. Due to the discrete resonant peaks and the small numerical aperture (NA) lens design, a color image is spectrally and spatially separated on the focal plane. We emphasize that the multi-imaging channels are realized by using noninterleaved metasurfaces, which can significantly improve the working efficiency and reduce the fabrication/design complexity. With the benefit of compact and easy to fabricate, the reported meta-imager paves a way for multispectral imaging and implementation of advanced optical systems.

    口試合格證明 I 中文摘要 II 英文摘要 III 致謝 X 目錄 XI 圖目錄 XIII 第一章 緒論 1 1.1 前言 1 1.2 多光譜影像 1 1.3 平面超穎介面簡介 3 1.3.1 超穎介面的特性與發展 3 1.3.2 電漿子超穎介面 4 1.3.3 多波長共振超穎介面 6 1.4 超穎透鏡 9 1.4.1 設計原理與特性 9 1.4.2 超穎透鏡成像與應用 12 1.4.3超穎高光譜成像 16 1.5 研究目的 18 第二章 數值模擬與實驗方法 21 2.1 前言 21 2.2 數值模擬計算 22 2.3 製程機台介紹 25 2.4 樣品製備流程 32 2.5 光路架設與量測 37 第三章 結果分析與討論 44 3.1 前言 44 3.2 多波長共振單元結構設計 44 3.3 反射式斜向聚焦超穎透鏡 47 3.4 多光譜影像與反射式超穎透鏡之應用 52 第四章 結論與未來展望 55 參考資料 56

    [1] X. Luo, D. Tsai, M. Gu, and M. Hong, "Subwavelength interference of light on structured surfaces," Advances in Optics and Photonics 10, 757-842 (2018).
    [2] M. L. Tseng, H. H. Hsiao, C. H. Chu, M. K. Chen, G. Sun, A. Q. Liu, and D. P. Tsai, "Metalenses: advances and applications," Advanced Optical Materials 6, 1800554 (2018).
    [3] B. Li, W. Piyawattanametha, and Z. Qiu, "Metalens-based miniaturized optical systems," Micromachines 10, 310 (2019).
    [4] L. Xu, C. A. Curwen, P. W. Hon, Q.-S. Chen, T. Itoh, and B. S. Williams, "Metasurface external cavity laser," Applied Physics Letters 107, 221105 (2015).
    [5] H. Sroor, Y.-W. Huang, B. Sephton, D. Naidoo, A. Vallés, V. Ginis, C.-W. Qiu, A. Ambrosio, F. Capasso, and A. Forbes, "High-purity orbital angular momentum states from a visible metasurface laser," Nature Photonics 14, 498-503 (2020).
    [6] A. M. Shaltout, V. M. Shalaev, and M. L. Brongersma, "Spatiotemporal light control with active metasurfaces," Science 364, eaat3100 (2019).
    [7] G. K. Shirmanesh, R. Sokhoyan, P. C. Wu, and H. A. Atwater, "Electro-optically tunable multifunctional metasurfaces," ACS Nano 14, 6912-6920 (2020).
    [8] Z. Wu, L. Li, Y. Li, and X. Chen, "Metasurface superstrate antenna with wideband circular polarization for satellite communication application," IEEE Antennas and Wireless Propagation Letters 15, 374-377 (2015).
    [9] Y. W. Wang, N. P. Reder, S. Kang, A. K. Glaser, and J. T. Liu, "Multiplexed optical imaging of tumor-directed nanoparticles: a review of imaging systems and approaches," Nanotheranostics 1, 369 (2017).
    [10] E. Adam, O. Mutanga, and D. Rugege, "Multispectral and hyperspectral remote sensing for identification and mapping of wetland vegetation: a review," Wetlands Ecology and Management 18, 281-296 (2010).
    [11] B. Lu, P. D. Dao, J. Liu, Y. He, and J. Shang, "Recent advances of hyperspectral imaging technology and applications in agriculture," Remote Sensing 12, 2659 (2020).
    [12] M. Govender, K. Chetty, and H. Bulcock, "A review of hyperspectral remote sensing and its application in vegetation and water resource studies," Water Sa 33, 145-151 (2007).
    [13] L. M. Dale, A. Thewis, C. Boudry, I. Rotar, P. Dardenne, V. Baeten, and J. A. F. Pierna, "Hyperspectral imaging applications in agriculture and agro-food product quality and safety control: A review," Applied Spectroscopy Reviews 48, 142-159 (2013).
    [14] D. Landgrebe, "Hyperspectral image data analysis," IEEE Signal Processing Magazine 19, 17-28 (2002).
    [15] G. A. Shaw, and H. K. Burke, "Spectral imaging for remote sensing," Lincoln Laboratory Journal 14, 3-28 (2003).
    [16] V. G. Veselago, "Electrodynamics of substances with simultaneously negative electrical and magnetic permeabilities," Soviet Physics Uspekhi 10, 504-509 (1968).
    [17] R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science 292, 77-79 (2001).
    [18] C. Yan, K.-Y. Yang, and O. J. Martin, "Fano-resonance-assisted metasurface for color routing," Light: Science & Applications 6, e17017-e17017 (2017).
    [19] V. G. Kravets, A. V. Kabashin, W. L. Barnes, and A. N. Grigorenko, "Plasmonic surface lattice resonances: a review of properties and applications," Chemical Reviews 118, 5912-5951 (2018).
    [20] D. Liu, F. Wu, R. Yang, L. Chen, X. He, and F. Liu, "Quasi-bound states in the continuum in metal complementary periodic cross-shaped resonators at terahertz frequencies," Optics Letters 46, 4370-4373 (2021).
    [21] O. Reshef, M. Saad-Bin-Alam, M. J. Huttunen, G. Carlow, B. T. Sullivan, J.-M. Ménard, K. Dolgaleva, and R. W. Boyd, "Multiresonant high-Q plasmonic metasurfaces," Nano Letters 19, 6429-6434 (2019).
    [22] J. Zhou, Z. Liu, X. Liu, P. Pan, X. Zhan, and Z. Liu, "Silicon-Au nanowire resonators for high-Q multiband near-infrared wave absorption," Nanotechnology 31, 375201 (2020).
    [23] A. Tittl, A. Leitis, M. Liu, F. Yesilkoy, D.-Y. Choi, D. N. Neshev, Y. S. Kivshar, and H. Altug, "Imaging-based molecular barcoding with pixelated dielectric metasurfaces," Science 360, 1105-1109 (2018).
    [24] S. A. Safiabadi Tali, J. Song, W. Nam, and W. Zhou, "Two‐tier nanolaminate plasmonic crystals for broadband multiresonant light concentration with spatial mode overlap," Advanced Optical Materials 9, 2001908 (2021).
    [25] Z. Shi, M. Khorasaninejad, Y.-W. Huang, C. Roques-Carmes, A. Y. Zhu, W. T. Chen, V. Sanjeev, Z.-W. Ding, M. Tamagnone, and K. Chaudhary, "Single-layer metasurface with controllable multiwavelength functions," Nano Letters 18, 2420-2427 (2018).
    [26] G. Yoon, J. Kim, J. Mun, D. Lee, K. T. Nam, and J. Rho, "Wavelength-decoupled geometric metasurfaces by arbitrary dispersion control," Communications Physics 2, 1-7 (2019).
    [27] J. Ren, T. Li, B. Fu, S. Wang, Z. Wang, and S. Zhu, "Wavelength-dependent multifunctional metalens devices via genetic optimization," Optical Materials Express 11, 3908-3916 (2021).
    [28] A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, and A. Faraon, "Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays," Nature Communications 6, 1-6 (2015).
    [29] M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, "Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging," Science 352, 1190-1194 (2016).
    [30] E. Arbabi, A. Arbabi, S. M. Kamali, Y. Horie, and A. Faraon, "Multiwavelength metasurfaces through spatial multiplexing," Scientific Reports 6, 1-8 (2016).
    [31] O. Avayu, E. Almeida, Y. Prior, and T. Ellenbogen, "Composite functional metasurfaces for multispectral achromatic optics," Nature Communications 8, 1-7 (2017).
    [32] W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, "A broadband achromatic metalens for focusing and imaging in the visible," Nature Nanotechnology 13, 220-226 (2018).
    [33] S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, M.-K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T.-T. Huang, and J.-H. Wang, "A broadband achromatic metalens in the visible," Nature Nanotechnology 13, 227-232 (2018).
    [34] M. Khorasaninejad, W. Chen, A. Zhu, J. Oh, R. Devlin, D. Rousso, and F. Capasso, "Multispectral chiral imaging with a metalens," Nano Letters 16, 4595-4600 (2016).
    [35] S. Colburn, A. Zhan, and A. Majumdar, "Metasurface optics for full-color computational imaging," Science Advances 4, eaar2114 (2018).
    [36] M. Faraji-Dana, E. Arbabi, H. Kwon, S. M. Kamali, A. Arbabi, J. G. Bartholomew, and A. Faraon, "Hyperspectral imager with folded metasurface optics," ACS Photonics 6, 2161-2167 (2019).
    [37] A. McClung, S. Samudrala, M. Torfeh, M. Mansouree, and A. Arbabi, "Snapshot spectral imaging with parallel metasystems," Science Advances 6, eabc7646 (2020).

    下載圖示 校內:2024-12-31公開
    校外:2024-12-31公開
    QR CODE