簡易檢索 / 詳目顯示

研究生: 林增興
Lin, Tseng-Hsing
論文名稱: 氧化鋅奈米線應用於低操作電壓側向短間距真空場發射底閘極電晶體之研究
Preparation and characterization of a bottom-gate field emission triode based on laterally-grown ZnO nanowires
指導教授: 王水進
Wang, Shui-Jinn
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 100
中文關鍵詞: 氧化鋅奈米線場發射底閘極
外文關鍵詞: ZnO nanowires, field emission, bottom-gate, triode
相關次數: 點閱:90下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文的研究主題係藉由水熱法(hydro-thermal growth, HTG)進行選擇性一維氧化鋅奈米線之側向成長(ZnO nanowires, ZnO-NWs),並將其應用於高真空側向短間距三極場發射底閘極元件。主要研究內容概分為四個部份。
    第一部分研究目標為降低陽極工作電壓,藉由縮短陰陽電極間距,縮短奈米線尖端之間距,在不降低電場強度下,降低陽極工作電壓,使元件可以操作在低厚度介電層狀況下,而不發生崩潰。主要方法為使用不同電極間距的光罩以定義不同電極間距大小。本實驗中所採陽極與陰極電極間距(LM)分別為7、8與9 m,保持氧化鋅奈米線成長參數不變,縮短LM大小使陰極與陽極奈米線尖端之間距離(LG)減小,在相同陽極電壓下,提升電場強度。實驗結果顯示,以電極間距LM為7 m之元件為例,於HTG成長後奈米線尖端間距LG為0.2 m,所得最低起使電壓(Von)為3.1 V(@I=5 A)與最高場發射增強因子為5029。經使用Simion 7.0商用軟體模擬不同LG: 1.2、0.7與0.2 m三種結構,模擬結果顯示發LG為0.2 m時,於二極間可獲得最密集之電位線分布,亦即可擁有最大電場強度。
    第二部分研究則旨在探討改變閘極介電層厚度對元件特性之影響。所採用3種不同SiO2厚度分別為500 nm、100 nm與60 nm。實驗結果顯示,於Vg = -1 V ~ 5 V偏壓條件下,採用厚度為60 nm SiO2介電層除具有較佳的轉移電導(gm) (95.6 ~ 298.6 µS(@Va = 5 V)),亦同時具有較大之場發射增強因子(β) (1370 ~ 7082)。於使用Simion 7.0商用軟體針對3種不同陰極與閘極間距(t)50、100與150 nm模擬結果顯示,當陰極與閘距離為50 nm時,閘極對陰極奈米線尖端附近局部電場與電位擁有較大控制能力,證實同時縮短陰極與閘極之間距離以及減少介電層厚度,有助於閘極控制場發射電流,增加轉移電導數值。
    於第三分研究中,我們利用晶種層底蝕刻製程進行水平奈米線成長並與無底蝕刻成長元件之電性比較。主要實驗目的為降低奈米線密度,同時減少電場屏蔽效應,使場發射電流增加。介電層統一使用100 nm厚度的SiO2。實驗結果顯示,於Vg = -5 V ~ 5 V偏壓條件下,經底蝕刻製程之元件擁有較佳轉移電導(gm) (1.91 ~ 12.65 µS(@Va = 5 V)),同時亦具有較大之場發射增強因子 (β) (8524 ~ 9975)。實驗結果得知,利用經底蝕刻成長所得側向奈米線之場發射元件,可有效減少電場屏障效應,提升閘極對場發射電流控制力,進而展現較佳轉移電導。經使用Simion 7.0商用軟體模擬2種有底蝕刻製程或是無底蝕刻製程的場發射三極元件,模擬結果顯示,有底蝕刻製程,閘極對陰極奈米線尖端附近局部電場與電位具有較大控制量,此一結果與實驗完全符合。
    於第四分研究中,我們以高介電係數材料HfO2 (k=20~25)取代SiO2,厚度仍採用60 nm。經C-V量測證實,於相同介電層厚度下採用HfO2材料可提升電容效應近2倍,於閘極偏壓(Vg)於-1 V ~ 5 V電壓範圍,場發射三極電晶體元件轉移電導 (gm)可提升至210 ~ 840 µS(@Va = 5 V)、場發射增強能力(β)則增加至1702 ~ 11498。實驗結果證實,使用高值介電材料,確實可增加電容值,有助於提升閘極對場發射電流控制力與最佳轉移電導。若與近期文獻所製備的場發射三極元件比較[52]-[59],本實驗所製備出來的真空場發射三極元件擁有較大場發射電流(5440 A),較轉移電導(840 S)與較低陽極與閘極工作電壓(Va = 0 V ~ 5 V, Vg = -1 V ~ 5 V)。
    本研究以HTG法製備出具有良好的高寬比之側向成長ZnO NWs,在FE-triode之上擁有良好的場發射電晶體之特性,並已使用Simion軟體模擬本實驗電場分佈並驗證元件特性。本研究利用側向短間距氧化鋅奈米線作為場發射底閘極電晶體發射源預期在未來於真空微電子元件應用上將極具潛力。

    In this thesis, a bottom-gate (BG) high transconductance field emission triode (FE-triode) using laterally-oriented ZnO nanowires (ZnO-NWs) as electron emitters was investigated.
    There are four parts in this thesis. The first part focus on the fabrication of FE diodes using laterally-oriented ZnO nanowires as electron emitters. Experimental results reveal that the samples with the spacing of electrodes (LM) of 7 m could have a tip-to-tip spacing (LG) of about 0.2 m after the synthesis of laterally-oriented ZnO nanowires using hydrothermal growth (HTG) method. It shows a turn-on voltage(VON) of 3.1 V at I=5 µA and a field enhance factor (β) of 5029. Distributions of electric field of the proposed FE diodes for the case of LG =0.2 m calculated from Simion 7.0 were presented and discussed.
    The influence of the gate oxide thickness on the performance of the EFE triodes was studied and results were discussed in the second part of this tesis. FE-triodes with SiO2 thickness of 500, 100 and 60 nm were prepared. It is found that the FE-triode with 60-nm-thick SiO2 exhibits the most satisfied performance with transconductances (gm) of 95.6 ~ 298.6 µS (@Va = -1 V ~ 5 V) and a β of 1370 ~ 7082 among all prepared samples at gate bias voltages (Vg) ranging from -1 to 5 V. The simion 7.0 software was also used to simulate cases with the space between cathode and gate electrode (da-k) of 150, 100 and 50 nm. Simulation results show that the case with da-k of 50 nm, the devcie could have the best field effect on the anode current.
    Effect of the synthesized ZnO-NWs on the vertical side wall of the ZnO seed layer with and without a undercut etching is examined and results were presented and discussed in the third part of this thesis. Our experimental resutls suggestes that FE triodes with undetcut etching process for the side wall of the seed layer could exhibit a much better performance with transconductances (gm) of 1.91 ~ 12.65 µS and a β of 8524 ~ 9975 at Vg ranging from -1 to 5 V. Simulaiton resutls for devices with different NWs densities obtained from simion 7.0 were analyzed and discussed.
    The final part of this thesis focuses on investigating the influence of the dielectric layer on the FE-triode characteristics. Two different dielectrics (HfO2 and SiO2) with the same thickness of 60 nm were employed. FE-triodes with bottom-gate structure were prepared and I-V characteristics were examined. It is found that FE-triodes with HfO2 gate dielectric could exhibit improved performance with transconductances (gm) ranging from 210 to 840 µS and the value of β in the range of 1702~11498 gate bias (Vg) ranging from -1 to 5 V.
    It is expected that FE-triode based on laterally-grown ZnO-NWs ould be a very promising candidate for low-operating-voltage vacuum electronics in the near future.

    目錄 中文摘要 i 英文摘要 v 誌 謝 vii 圖 表 目 錄 xii 圖 目 錄 xiii 第一章 緒論 1 1-1簡介 1 1-2研究動機 2 第二章 簡介 5 2-1氧化鋅材料簡介 5 2-2一維材料成長機制 7 2-2-1汽-液-固機制(vapor-liquid-solid (VLS) mechanism 8 2-2-2溶液-液相-汽相機制(solution-liquid-solid (SLS) mechanism) 10 2-2-3汽-固機制(vapor-solid (VS) mechanism) 11 2-3氧化鋅奈米線製程方法 11 2-3-1汽-液-固磊晶成長法(Vapor-liquid-solid epitaxial growth method)[29] 12 2-3-2有機金屬氣相磊晶製程(metalorganic vapor-phase epitaxial, MOVPE)[30] 12 2-3-3化學氣相沈積法(chemical vapor deposition, CVD)[31] 13 2-3-4使用NiO作為催化劑成長[32] 14 2-3-5電鍍法(Electroplating method)[33] 15 2-3-6水熱法(hydrothermal method)[34] 17 2-4水熱法成長(hydro-thermal growth, HTG)氧化鋅奈米線之演進與製程方法 18 2-5電子發射(electron emission) 23 2-5-1熱電子發射(hot electron emission) 24 2-5-2熱場發射(hot field emission) 25 2-5-3場發射(field emission) 25 2-5-4 F-N Theory 26 2-5-5電場屏蔽效應(screen effect) 29 第三章 實驗流程、分析方法與設備 32 3-1前言 32 3-2 實驗材料及設備 33 3-2-1 實驗材料 33 3-2-2 實驗設備 34 3-3 RCA clean 流程 45 3-4 環形傳輸量測(CTLM) 47 第四章 具側向成長ZnO-NWs底閘極場發射三極元件(FE-triode)之製備及電性分析與研究 50 4-1 研究動機 50 4-2具ZnO-NWs之側向短間距場發射三極元件之製備 51 4-3覆蓋電極金屬材料之選用 54 4-4氧化鋅奈米線之晶型結構分析(XRD、TEM、SAED及EDS)…. 55 4-5 場發射(field emission, FE)電特性量測與分析 58 4-5-1探討二極間距縮短之影響 58 4-5-2以商業軟體(Simion 7.0)進行元件電場模擬之不同二極間距 61 4-5-3探討介電層SiO2厚度對閘極控制力與場發射電特性之影響 63 4-5-4以商業軟體(Simion 7.0)進行元件電場模擬之不同介電層厚度條件 70 4-5-5探討元件有無底蝕刻製程對側向奈米線型態影響與閘極控制力之影響 75 4-5-6以商業軟體(Simion 7.0)進行元件電場模擬之有無底蝕刻製程條件 80 4-5-7 探討相同厚度與不同材料介電層與閘極控制利能力之影響 84 第五章 結論與未來工作 91 5-1 結論 91 5-2 未來工作 93 參考文獻 95 表 目 錄 表4-1、將三種不同SiO2介電層厚度,元件電性數據做總結 70 表4-2、不同陰極與閘極間距(t)150、100與50 nm,與不同閘極電壓5、0與-5 V,靠進陰極奈米線發線尖端0.02 m的電位大小 75 表4-3、不同陰極與閘極間距(t)150、100與50nm,與不同閘極電壓5、0與-5 V,靠進陰極奈米線發線尖端0.02 m,陰極往陽極方向的電場大小 75 表4-4、將有無底蝕刻製程的元件電性數據做總結 80 表4-5、有無底蝕刻製程,與不同閘極電壓5、0與-5 V,靠進陰極奈米線發線尖端0.02 m的電位大小 83 表4-6、有無底蝕刻製程,與不同閘極電壓5、0與-5 V,靠進陰極奈米線發線尖端0.02 m,陰極往陽極方向的電場大小…. 84 表4-7、不同介電層(a)SiO2與(b)HfO2的電性數據總結 90 表4-8、本製備FE-triode與其他相關文獻之三極特性彙整表 90 圖 目 錄 圖2-1氧化鋅晶體結構[14] 6 圖2-2 VLS成長機制示意圖[25] 9 圖2-3穿透式顯微鏡拍攝Ge奈米現成生過程[25] 10 圖2-4 SLS成長機制示意圖[27] 11 圖2-5 V-L-S法成長的氧化鋅奈米線[29] 12 圖2-6 MOVPE成長的氧化鋅奈米柱[30] 13 圖2-7 CVD成長一維氧化鋅奈米柱實驗示意圖[31] 14 圖2-8 CVD成長的氧化鋅奈米柱[31] 14 圖2-9使用NiO當催化劑所成整的ZnO-NWs [32] 15 圖2-10陽極氧化鋁膜板(AAOT)[33] 16 圖2-11電鍍法製備氧化鋅奈米線流程圖 16 圖2-12為電鍍法成長的氧化鋅奈米線[33] 16 圖2-13水熱法成長的氧化鋅奈米柱[34] 17 圖2-14為L. Vayssieres團隊在矽基板上成長氧化鋅奈米線陣列[39] 20 圖2-15 P.Yang團隊所製備出的氧化鋅奈米陣列[42] 20 圖2-16在有AZO的基板上所製備出的氧化鋅奈米柱(a)矽基板與(b)PET基板[43] 21 圖2-17氧化鋅奈米住成長過程(a)首先成長出個別的氧化鋅晶體、(b)晶體跟晶體間開始因接觸而產生熔合成長與(c)最後形成單晶的氧化鋅奈米柱[43] 22 圖2-18熔合前後的氧化鋅晶體[43] 22 圖2-19金屬與真空結構的能帶示意圖 24 圖2-20場增強因子β示意圖[47] 28 圖2-21場發射子幾何形狀優劣比較圖[49] 28 圖2-22場發射子幾何形狀所對應F-N plot[49] 28 圖2-23不同密度所造成場發射特性的影響[50] 30 圖2-24使用Simion軟體模擬Tip to plane不同奈米線的電位線… 31 圖2-25使用Simion軟體模擬Tip to tip不同奈米線的電位線… 31 圖3-1實驗流程圖 32 圖3-2水熱法成長氧化鋅奈米線的設備示意圖 35 圖3-3射頻磁控濺鍍系統之真空腔體 37 圖3-4射頻磁控濺鍍系統示意圖 37 圖3-5真空電子束蒸鍍機 38 圖3-6真空電子束蒸鍍系統示意圖 39 圖3-7高解析熱電子型場發射掃描式電子顯微鏡 39 圖3-8電子顯微鏡主體結構示意圖 40 圖3-9電子束與試片之交互作用 41 圖3-10高解析場發射掃描穿透式電子顯微鏡 42 圖3-11場發射量測用真空腔體 43 圖3-12曝光機外觀圖 44 圖3-13微影製程流程圖 44 圖3-14 X-Ray光譜儀(XRD) 45 圖3-15實驗室所使用的Wet bunch 45 圖3-16 CTLM結構圖形,六個環為一組,每個環形內圓半徑皆為77 µm,而環的寬度分別為9、14、19、24、29、和34 µm,探針位置需下在環內及環外 48 圖3-17 CTLM六個環所量測得的阻值,並經由截距計算距離為0時的總電阻RT,內插圖為六個環之I-V量測圖,依據斜率計算出各阻值 49 圖4-1具具氧化鋅奈米線之側向短間距三極場發射三極元件之製備流程 54 圖4-2 CTLM六個環所量測得的阻值,並經由截距算出距離為0時的總電阻RT,內插圖為六個環之I-V量測圖,依據斜率計算出各阻值,(a)Cr-Zno,(b)Ti-ZnO 55 圖4-3氧化鋅奈米線之XRD分析圖 56 圖4-4氧化鋅奈米線之TEM圖及其SAED圖。(a)低倍率TEM圖(b) SAED圖與(c)高倍率TEM圖 57 圖4-5 ZnO-NWs之EDS元素成分分析 57 圖4-6以固定沉積200 nm膜厚ZnO晶種層的三種不同電極間距(LM)分別為(a)9 m (b)8 m (c)7 m;奈米線尖端最短間距分別為(a)1.2 m (b)0.7 m (c)0.2 m 59 圖4-7具氧化鋅奈米線側向短間距場發射器之場發射量測示意圖 60 圖4-8三種不同LG的I-V曲線圖,內插圖為F-N plot 61 圖4-9為模擬二極元件比例圖 62 圖4-10為模擬元件電位圖,LG為(a) 0.2 m (b) 0.7 m (c) 1.2 m.. 62 圖4-11為3種不同場發射三極元件SEM影像圖,SiO2介電層厚度分別為(a)500 nm、(b)100 nm與(c)60 nm,奈米線之間最短間距(LG)分別為(a)0.5 m、(b)0.2 m與(c)0.1 m 65 圖4-12具氧化鋅奈米線側向短間距底閘極結構三極場發射器之場發射量測示意圖 66 圖4-13為3種不同場發射三極元件的Ia-Va曲線(a)、(c)、(e)與F-N曲線圖(b)、(d)、(f),SiO2介電層厚度分別為(a)、(b) 500 nm,(c)、(d) 100 nm與(e)、(f) 60 nm 68 圖4-14為3種不同場發射三極元件Ia-Vg(a)、(c)、(e)曲線圖與gm-Vg(b)、(d)、(f),SiO2介電層厚度分別為(a)、(b) 500 nm,(c)、(d) 100 nm與(e)、(f) 60 nm 69 圖4-15為模擬三極元件比例圖 71 圖4-16為模擬元件電位圖,閘極與陰極之間距離(t)為 (a)、(b)、(c)為50 nm,(d) 、(e) 、(f)為100 nm,(g)、(h)、(i)為150 nm;閘極電位(a)、(d)、(g)為5 V,(b) 、(e) 、(h)為0 V,(c)、(f)、(i)為-5 V 72 圖4-17為模擬電位與電場特性圖,(a)、(c)、(e)元件電位與(b)、(d)、(f)電場特性曲線圖,陰極與閘極間距(t),(a)、(b)為50 nm,(c) 、(d)為100 nm,(e)、(f)為150 nm 74 圖4-18有底蝕刻晶種製程(a)與無底蝕刻製程(b)的水平短間距氧化鋅奈米線真空場發射三極之底閘極結構的示意圖 76 圖4-19有底蝕刻晶種製程(a)與無底蝕刻製程(b)的水平短間距氧化鋅奈米線真空場發射三極之底閘極結構的SEM影像圖 77 圖4-20有底蝕刻製程(a)、(c)、(e)、(g),無底蝕刻製程(b)、(d)、(f)、(h),Ia-Va特性曲線(a)、(b),F-N特性曲線(c)、(d),Ia-Vg特性曲線(e)、(f),gm-Vg特性曲線(g)、(h) 79 圖4-21為模擬元件電位圖,模擬有底蝕刻製程(a),與無底蝕刻製程(b)的場發射三極元件 80 圖4-22為模擬元件電位圖,(a)、(c)、(e)模擬有底蝕刻製程元件,(b)、(d)、(f)為模擬無底蝕刻製程,閘極電壓分別為,(a)(b)為5 V,(c)、(d)為0 V,(e)、(f)為-5 V 81 圖4-23為模擬電位與電場特性圖,(a)、(c)元件電位與(b)、(d)電場特性曲線圖,介電層厚度(a)、(b) 有底蝕刻製程,(c) 、(d) 無底蝕刻製程 83 圖4-24不同介電層J-V測量簡示圖 85 圖4-25 p-Si/SiO2/ZnO與p-Si/HfO2/ZnO不同介電層材料的的J-V特性曲線圖 85 圖4-26不同介電層C-V測量簡示圖 86 圖4-27 p-Si/SiO2/ZnO與p-Si/HfO2/ZnO不同介電層材料的的C-V曲線圖,p-Si做為閘極,ZnO薄膜接地,SiO2與HfO2厚度為60 nm,ZnO薄膜厚度為200 nm 86 圖4-28 SiO2介電層60 nm厚度 (a)與HfO2介電層60 nm厚度(b)的水平短間距氧化鋅奈米線真空場發射三極之底閘極結構的SEM影像圖 88 圖4-29場發射元件電性圖,(a)與(b)為Ia-Va特性曲線,(c)與(d)為F-N特性曲線,(e)與(f)為Ia-Vg特性曲線,(g)與(h)為gm-Vg特性曲線;(g)、(h),(a)、(c)、(e)與(g)元件電性是使用60 nm厚度的HfO2介電層,(b)、(d)、(f)與(h)元件電性是使用60 nm厚度的SiO2介電層 89

    參考文獻
    [1] S. Shao, P. Jia, S. Liu, and W. Bai, “Stable field emission from rose-like zinc oxide nanostructures synthesized through a hydrothermal route,” Materials Letters, Vol. 62, p.1200, 2008.
    [2] H Y Yang, S P Lau, S. F. Yu, L. Huang, M. Tanemura, J. Tanaka, T. Okita, and H. H. Hng, “Field emission from zinc oxide nanoneedles on plastic substrates,” Nanotechnology, Vol. 16, p. 1300, 2005.
    [3] C. X. Xu and X. W. Sun J, “Strategies to Improve Field Emission Performance of Nanostructural ZnO,” Electron. Mater., Vol. 36, p. 543, 2007.
    [4] K. C. Chin, C. K. Poh, G. L. Chong, J. Y. Lin, C. H. Sow, A. T. S. Wee, “Large area, rapid growth of two-dimensional ZnO nanosheets and their field emission performances,” Appl. Phys. A, Vol. 90, p. 623, 2008.
    [5] J. Chen, W. Lei, W. Chai, Z. Zhang, C. Li, and X. Zhang, “High field emission enhancement of ZnO-nanorods via hydrothermal synthesis,” Solid-State Electron., Vol. 52, p. 294, 2008.
    [6] K. Hou, C. Li, W. Lei, X. Zhang, X. Yang, K. Qu, B. Wang, Z. Zhao, X. W. Sun, “Influence of synthesis temperature on ZnO nanostructure morphologies and field emission properties,” Physica E, Vol. 41, p. 470, 2009.
    [7] A.-J. Cheng a, D. Wang b, H.W. Seo b, C. Liu a, M. Park b, Y. Tzeng, “Cold cathodes for applications in poor vacuum and low pressure air environments Carbon nanotubes versus ZnO nanoneedles,” Diamond & Related Materials, Vol. 15, p.426, 2006.
    [8] Y. Zhang, D. Lan, Y. Wang, and F. Wang, Chem. China, Vol. 3, p. 229, 2008.
    [9] J. Chen, W. Lei, W. Chai, Z. Zhang, C. Li, and X. Zhang, “High field emission enhancement of ZnO-nanorods via hydrothermal synthesis,” Solid-State Electron., Vol. 52, p. 294, 2008.
    [10] C. Y. Lee, T. Y. Tseng, S. Y. Li, and P. Lin, “Electrical characterizations of a controllable field emission triode based on low temperature synthesized ZnO nanowires,” Nanotechnology, Vol. 17, p. 83, 2006.
    [11] Veljko Milanovic, Lance Doherty, Dana A. Teasdale, Siavash Parsa, and Kristofer S. J. Pister, “Micromachining Technology for Lateral Field Emission Devices,” IEEE Transactions on Electron Devices, Vol. 48, No. 1, 2001.
    [12] K. Subramanian, W. P. Kang, and J. L. Davidson, “Nanocrystalline diamond lateral vacuum microtriode,” Appl. Phys. Lett., Vol. 93, p.203511 , 2008.
    [13] V. P. Mammana, D. Jaeger, O. Shenderova, and G. E. McGuire, “Field emission device with back gated structure,” J. Vac. Sci. Technol. A 22(4), 2004.
    [14] Peardon’s Handbook of Crystallographic Data, 4795.
    [15] K. J. Kima, and Y. R. Park, “Large and abrupt optical band gap variation in In-doped ZnO,” Appl. Phys. Lett., Vol. 78, no. 4, p. 475, 2000.
    [16] Y. Y. Xi, Y. F. Hsu, A. B. Djurisic, A. M. C. Ng, W. K. Chen, H. L. Tam, and K. W. Cheah, “NiO/ZnO light emitting diodes by solution-based growth,” Appl. Phys. Lett., Vol. 92, no. 113505, 2008.
    [17] Z. K. Tang, G. K. L. Wong, and P. Yu, “Room-temperature ultraviolet laser emission from self-assembled ZnO microcristallite films,” Appl. Phys. Lett., Vol. 72, no. 25, 1998.
    [18] C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao,Y. H. Lo, and D. Wang, “ZnO Nanowire UV Photodetectors with High Internal Gain”, Nano Letters, Vol. 7, No. 4,p.1003, 2007.
    [19] Hiromichi Ohta, Masahiro Orita, and Masahiro Hirano, “Fabrication and characterization of ultraviolet-emitting diodes composed of transparent p-n heterojunction, p-SrCu2O2 and n-ZnO,” Journal of Applied Physics, Vol. 89, no. 10, 2001.
    [20] R. S. Wagner, and W. C. Ellis, “Vapor-liquid-solid mechanism of single crystal growth,” Appl. Phys. Lett., Vol. 5, no. 5, p. 89, 1964.
    [21] Y. Wu, and P. Yang, “Direct observation of vapor-liquid-solid nanowire growth,” J. Am. Chem. Soc., Vol. 123, p. 3165, 2001.
    [22] Q. H. Li, Y. X. Liang, Q. Wan, and T. H. Wang, “Oxygen sensing characteristics of individual ZnO nanowire transistors,” Appl. Phys. Lett., Vol. 85, No. 26, 2004.
    [23] Y. W. Zhu, H. Z. Zhang, X. C. Sun, S. Q. Feng, J. Xu, Q. Zhao, B. Xiang, R. M. Wang, and D. P. Yu “Efficient field emission from ZnO nanoneedle arrays,” Appl. Phys. Lett., Vol. 83, No. 1, 2003.
    [24] R. S. Wagner, and W. C. Ellis, “Vapor-liquid-solid mechanism of single crystal growth,” Appl. Phys. Lett., Vol. 5, no. 5, p. 89, 1964.
    [25] Y. Wu, and P. Yang, “Direct observation of vapor-liquid-solid nanowire growth,” J. Am. Chem. Soc., Vol. 123, p. 3165, 2001.
    [26] T. J. Trentler, K. M. Hickman, S. C. Goel, A. M. Viano, P. C. Gibbons, W. E. Buhro, “Solution-Liquid-Solid Growth of Crystalline III-V Semiconductors: An Analogy to Vapor-Liquid-Solid Growth,” Science, Vol. 270, 5243, p. 1791, 1995.
    [27] Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim and H. Yan, “One-Dimensional Nanostructures: Synthesis ,Characterization, and Applications,” Adv. Mater., Vol. no. 15, p. 353, 2003.
    [28] E. W. Wong, P. E. Sheehan, C. M. Lieber, “Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes,” Science, Vol. 277, p. 1971, 1997.
    [29] Seu Yi Li, Chia Ying Lee, Tseung Yuen Tseng, “Copper-catalyzed ZnO nanowires on silicon (100) grown by vapor–liquid–solid process,” Journal of Crystal Growth 247, 357–362, 2003.
    [30] S. C. Lyu, Y. Zhang, H. Ruh, C. J. Lee, “Low temperature growth and photoluminescence of well-aligned zinc oxide nanowires,” Chem. Phys. Lett., Vol. 363, No. 134, p. 134, 2002.
    [31] Jih-Jen Wu and Sai-Chang Liu, 2002, “Low Temperature Growth of Well-Aligned ZnO Nanorods by Chemical Vapor Deposition,” Adv. Mater. Vol. 14, p. 215-218.
    [32] W. I. Park, D. H. Kim, S. W. Jung, G. C. Y. , “Metalorganic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods,” Appl. Phsy. Lett., Vol. 80, p. 4232, 2002.
    [33] Y. Li, G. W. Meng, L. D. Zhang, “Ordered semiconductor ZnO nanowire arrays and their photoluminescence properties,” Appl. Phsy. Lett., Vol. 76, p. 2011, 2000.
    [34] L. Vayssieres, “growth of arrayed nanorods and nanowires of ZnO form aqueous solution,” Adv. Mater., Vol. 15, no. 5, p.464, 2003.
    [35] Y. Y. Xi, Y. F. Hsu, A.B. Djurisic, A. M. C. Ng, W. K. Chan, H. L. Tam, and K. W. Cheah, “NiO/ZnO light emitting diodes by solution based growth,” Appl. Phsy. Lett., Vol. 92, p. 113505, 2008.
    [36] M. K. Lee, C. L. Ho, and C. H. Fan, “Enhancement of light extraction efficiency of gallium nitride flip-chip light-emitting diode with silion oxide hemispherical microlens on its back,” IEEE Photonics technology Letters, Vol. 20, no. 15, p. 1293, 2008.
    [37] K. Tsukuma, T. Akiyama , and Imai, “Liquid phase deposition film of tin oxide,” J. Non-Cryst. Solid, Vol. 210, no. 48, p. 48, 1997.
    [38] L. Spanhel, M. A. Anderson, “Semiconductor clusters in the sol-gel process: quantized aggregation, gelation, and crystal growth in concentrated zinc oxide colloids,” J. Am. Chem. Soc., Vol. 113(8), p. 2826, 1991.
    [39] L. Vayssieres, K. Keis, S. E. Lindquist, A. Hagfeldt, “Purpose-built anisotropic metal oxide material: 3D highly oriented microrod array of ZnO,” J. Phys. Chem. B., Vol. 105(17), p. 3350, 2001.
    [40] L. Vayssieres, N. Beermann, S. E. Lindquist, A. Hagfeldt, “Controlled Aqueous Chemical Growth of Oriented Three-Dimensional Crystalline Nanorod Arrays: Application to Iron(III) Oxides,” Chemistry of Materials., Vol. 13, no. 2, p. 233, 2001.
    [41] Z. R. Tian, J. A. Voigt, J. Liu, B. Mckenzie, M. J. Mcdermott, “Biomimetic arrays of oriented helical ZnO nanorods and columns,” J. Am. Chem. Soc., Vol. 124(44), p. 12954, 2002.
    [42] L. E. Greene, M. Law, J. Goldberger, F. Kim, J. C. Johnson, Y. Zhang, R. J. Saykally, P. Yang, “Low-temperature wafer-scale production of ZnO nanowire arrays,” Angew. Chem., Vol. 115, p. 3139, 2003.
    [43] Q. Li, V. Kumar, Y. Li, H. Zhang, T. J. Marks, R. P. H. Chang, “Fabrication of ZnO nanorods and nanotubes in aqueous solution,” Chem. Mater., Vol. 17, p. 1001, 2005.
    [44] K. Govender, David S. Boyle, P. B. Kenway, and P. O’Brien, “Understanding the factors that govern deposition and morphology of thin film of ZnO from aqueous solution,” J. Mater. Chem., Vol. 14, p. 2575, 2004.
    [45] R. H. Fowler and L. W. Nordheim, “Electron emission in intense electric fields,” Proceedings of the Royal Society, Vol. 119, p. 173, 1928.
    [46] S. H. Jo, D. Z. Wang, J. Y. Huang, W. Z. Li, K. Kempa K and Z. F.Ren, “Field emission of carbon nanotubes grown on carbon cloth,” Appl. Phys. Lett., Vol. 85, no. 810, 2004.
    [47] Soo Young Kim, “Growth and Field Emission of Multi-walled Carbon Nanotubes,” University of Southern California, Master of Science, 2008.
    [48] Q. Zhao, H. Z. Zhang, Y. W. Zhu, S. Q. Feng, X. C. Sun, J. Xu, and D. P.Yu, “Morphological effects on the field emission of ZnO nanorod arrays,” Appl. Phys. Lett., Vol. 86, no. 203115, 2005.
    [49] T. Utsumi, “Vacuum microelectronics: what's new and exciting,” IEEE Trans. Electron Dev., Vol. 38, p. 2276, 1991.
    [50] L. Nilsson, O. Groening, C. Emmenegger, O. Kuettel, E. Schaller, and L. Schlapbach, “Scanning field emission from patterned carbon nanotube films,” Appl. Phys. Lett., Vol. 76, no. 15, 2000.
    [51] Y.G. Chen, M. Ogura, S. Yamasaki, H. Okushi, “Investigation of specific contact resistance of ohmic contacts to B-doped homoepitaxial diamond using transmission line model,” Diamond & Related Materials, Vol. 13, p. 2121, 2004.
    [52] Y.M. Wong , W.P. Kang , J.L. Davidson , B.K. Choi , W. Hofmeister, J.H. Huang, “Field emission triode amplifier utilizing aligned carbon nanotubes,” Diamond & Related Materials, Vol 14, p. 2069 , 2005.
    [53] Y. M. Wong, W. P. Kang and J. L. Davidson, “Transistor characteristics of thermal chemical vapor deposition carbon nanotubes field emission triode,” J. Vac. Sci. Technol. B, Vol. 23, no. 2, 2005.
    [54] Chia Ying Lee, Tseung Yuen Tseng, SeuYi Li and Pang Lin, “Electrical characterizations of a controllable field emission triode based on low temperature synthesized ZnO nanowires,” Nanotechnology 17,83–88, 2006.
    [55] Seu Yi Li, Chia Ying Lee, Pang Lin, and Tseung Yuen Tseng, “Gate-controlled ZnO nanowires for field-emission device application,” J. Vac. Sci. Technol. B 24, 147 (2006).
    [56] Cheol-Min Park, Moo-Sup Lim, and Min-Koo Han, “A Novel In Situ Vacuum Encapsulated Lateral Field Emitter Triode,” IEEE Electron Device Lett., Vol. 18, no. 11, 1997.
    [57] Sangyeon Han, Sun-a Yang, Taekeun Hwang ,Jongho LEE, Jong Duk LEE and Hyungcheol SHIN, “Lateral Silicon Field-Emission Devices using Electron Beam Lithography,” Jpn. J. Appl. Phys Vol.39, pp. 2556-2559, 2000.
    [58] Karthik Subramanian, Weng Poo Kang, and Jim L. Davidson, “A Monolithic Nanodiamond Lateral Field Emission Vacuum Transistor,” IEEE Electron Device Lett., Vol. 29, no. 11, 2008.
    [59] H. M. Wang, Z. Zheng, Y. Y. Wang, J. J. Qiu, Z. B. Guo, Z. X. Shen, and T. Yu, ”Fabrication of graphene nanogap with crystallographically matching edges and its electron emission properties,” Appl. Phsy. Lett, Vol 96, p. 023106, 2010.
    [60] 曾伯霜, “JSM-6700F HR-FESEM Opearation Manual,” Department of Chemical Engineering National Cheng Kung University.

    下載圖示 校內:2016-08-03公開
    校外:2016-08-03公開
    QR CODE