簡易檢索 / 詳目顯示

研究生: 賴明潔
Lai, Ming-Chieh
論文名稱: 工業用機械手臂之公差優化設計
Optimal Tolerance Allocation for Industrial Robotic Arms
指導教授: 賴新一
Lai, Hsin-Yi
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 115
中文關鍵詞: 公差設計多體系統機械手臂基因演算法
外文關鍵詞: tolerance allocation, multibody system, genetic algorithm, robotic arms
相關次數: 點閱:81下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 公差設計為機械設計與製造中之重要環節,常被用來衡量品質和成本之間的取捨。以本研究使用之並聯式機械手臂為例,每提升0.01mm終端定位精度,平均就可能增加28%的總成本,故準確訂定公差精度可以提升產品品質且節省生產成本。近年來,機械手臂已在各項產業中廣泛的被使用,尤其在機械製造領域,機械手臂常被用於置物、取物、焊接、噴漆、銑床、鑽床、組裝等製程,而其精度便成為產品加工時必須考量的重要因素,有鑒於此,本研究針對機械手臂之長度與節點之公差進行設計,並考量精度與成本之最佳化綜合指標。
    本研究的主要目標為在給定產品精度下,模擬零件生產製造及機械手臂之運作,並利用吾人撰寫之基因演算法程式求得最佳公差設定,首先運用蒙地卡羅方法模擬製造機械手臂零件的真實情況,並將機械手臂視為一個多體系統並進行分析,代入機械手臂的運動方程式模擬機械手臂真實運動,得到在運動範圍內各個點的精度誤差。若符合精度要求,將其公差代入經濟成本方程式(economic cost function)和質量損失方程式(quality loss function),將兩者相加得到綜合成本(comprehensive cost)。達基因演算法之終止條件後,最低成本者就為模擬得到的最佳公差設計數值。
    本文中使用了六種模型,即Fortini’s 離合器、四連桿模型、六聯桿模型、SCARA機器手臂、關節式機器手臂及並聯式機器手臂模型作為範例,實際運用本文所呈之研究方法進行分析、模擬,以得出數據與分析結果後並與文獻及常用之傳統公差設計法作比較,視其結果能否顯示本文所用之研究方法相較於其他研究方法的便利之處。
    為了得到機械系統中各個零件之最佳公差精度設定,本文透過Fortini’s 離合器、四連桿模型、六連桿模型、SCARA機器手臂、關節式機器手臂及並聯式機器手臂模型使用基因演算法,找出最佳的公差精度設定。從基因演算法模擬實例得到的結果可以歸納為以下三點結論,基因演算法應用於公差設計可以滿足產品生產與品質服務的設計要求,能滿足生產製造、精度與品質服務之最低成本設計,可以套用到不同型態的產品上,從靜態的離合器系統到三維動態的機械手臂,程式可應用的範圍廣泛,可以供業界於自動化設計流程上使用,且優於傳統所使用的WCM(worst-case model)和RSS(root sum squared) model。

    Tolerance allocation is a significant process in mechanical design for real production. It indeed plays as a critical bridge for linking system performance, design requirements, product quality as well as manufacturing cost. In other words, allocating proper tolerance for each involving system components can achieve both the quality and economic requirements for various industrial production systems. Since the allocation of tolerances requires lots of operating data ranging from product manufacturing to analysis, the improvement on computing technology, the process of design, manufacturing, and production processes can be better systematically optimized via a newly developed computing CPT (cost-precision-time) approach presented in this thesis.

    In order to obtain best tolerance allocation of each component in a mechanical system, six kinds of model including fortini’s clutch model, four-bar linkage model, six-bar linkage model, SCARA robot, articulated robot and delta robot model are employed, to compute and optimize for best tolerance allocation all possible combinations in the working range by Monte Carlo, genetic algorithm and experimental approaches. The results of simulation show that the aforementioned methods can be applied to design for static, dynamic and various robotic arms systems for 3D motion. In addition, the results obtained by tolerance optimal CPT method are accurate as compared to other methods. This indicates that the CPT tolerance method can be used for the tolerance allocation for various products. Moreover, as applied in the manufacturing of real-world productions, the need for tolerance allocation problem can be adopted to help design of better machines and robotic systems.

    中文摘要 I Abstract III 致謝 VI 圖目錄 XI 表目錄 XII 符號表 XIII 第一章 緒論 1 1.1 研究動機 1 1.2 研究目標 3 1.3 內容簡介 4 第二章 文獻回顧與本研究之基本假設 6 2.1 公差概念之回顧 6 2.2 機械手臂於工業生產上之應用 7 2.3 公差設計與優化之文獻回顧 8 2.3.1 公差設計方法之文獻回顧 8 2.3.2 基因演算法在工程上之應用回顧 11 2.3.3 實驗設計法在工程上之應用回顧 15 2.4 機械多體系統公差設計法 15 2.5 機械多體系統之公差配合模型 20 2.6 本研究相關之基本假設 29 第三章 CPT公差設計理論與優化演算流程 31 3.1 系統公差設計理論與流程 31 3.2 公差優化演算系統之建構 36 3.3 製程能力作為公差設計之品質管控指標 42 3.4 經濟效益指標作公差設計之成本管控 47 3.4.1 質量損失之估算 47 3.4.2 製造成本之估算 51 3.4.3 總經濟成本之綜合指標 52 3.5 以實驗設計法作為機械手臂數位調控作業之管控指標 54 第四章 CPT公差設計法之印證與應用實例 55 4.1離合器與六連桿系統之公差設計與驗證 55 4.1.1 離合器之公差設計與驗證 55 4.1.2 連桿系統之公差設計與驗證 59 4.2 SCARA機器手臂之公差設計例 70 4.3關節式機器手臂之公差設計例 76 4.4並聯式機器手臂之公差設計例 81 第五章 總結與未來展望 92 5.1 總結 92 5.2 未來展望 94 參考資料 95 附錄 1 幾何公差形態性質介紹表[13] 99 附錄 2 工業用機械手臂之種類 102 附錄 3 多體系統形態與約束方程式表[14] 103 附錄 4 製程能力指數判斷表[19] 105 附錄 5 不同分布型態對應的常數 值[25] 106 附錄 6 Fortini’s離合器[29] 107 附錄 7 動態六連桿機構 107 附錄 8 四聯桿機構示意圖(a)前視圖(b)側視圖[14] 108 附錄 9 WCM和RSS model示範工程圖[1] 109 附錄 10 迴圈方程式示意圖[1] 109 附錄 11 SCARA機器手臂[30] 110 附錄 12 SCARA機器手臂外觀尺寸及運動範圍[30] 110 附錄 13 SCARA機器手臂規格[30] 111 附錄 14 關節式機器手臂[30] 112 附錄 15 關節式機器手臂外觀尺寸及運動範圍[30] 112 附錄 16 關節式機器手臂規格[30] 113 附錄 17 並聯式機器手臂[30] 114 附錄 18 並聯式機器手臂之外觀尺寸與運動範圍[30] 114 附錄 19 並聯式機器手臂之規格[30] 115

    [1] Drake, P. J., “Dimensioning and Tolerancing Handbook,” 1999.
    [2] Jin, S., Zheng, C., Yu, K. and Lai, X., “Tolerance design optimization on cost-quality trade-off using the Shapley value method,” Journal of Manufacturing Systems, pp. 142-150, 2011.
    [3] Andolfatto, L., Thiébaut, F., Lartigue, C. and Douilly, M., “Quality- and cost –driven assembly technique selection and geometrical tolerance allocation for mechanical structure assembly,” Journal of Manufacturing Systems, pp. 103-115, 2014.
    [4] Pan, J.N. and Pan, J., “Optimization of engineering tolerance design using revised loss functions,” Engineering optimization, pp. 99-118, 2009.
    [5] Chase, K.W., “Tolerance Allocation Methods for Designers,” Brigham Young University, 1999.
    [6] Cagan, J. and Kurfess, T.R., “Optimal design for tolerance and manufacturing allocation,” Carnegie Mellon University, 1991.
    [7] Milberg, C., Tommelein, I.D. and Alves, T., “Improving design fitness through tolerance analysis and tolerance allocation,” University of California, Berkeley, 2002.
    [8] Choi, H. G. R., Park, M. H. and Salisbury, E., “Optimal tolerance allocation with loss functions,” Journal of Manufacturing Science and Engineering, 2000.
    [9] Zhang, H.C., “Advanced Tolerance Techniques,” Texas Technical University, 1997.
    [10] Mitsukura, Y., Yamamoto, T. and Kaneda, M., “A design of self-tuning PID controllers using a genetic algorithm,” Okayama Prefectural University, Japan, 1999.
    [11] Kwok, D.P. and Sheng, F., “Genetic algorithm and simulated annealing for optimal robot arm PID control,” Hong Kong Polytech., Hong Kong, 1994.
    [12] Jenkins, W.M., “On the application of natural algorithms to structural design optimization,” Engineering Structure., 1997.
    [13] 李哲葦, “多體機械系統之公差優化設計,” 國立成功大學機械工程學系, 2015.
    [14] Chun, H., Kwon, S.J. and Tak, T., “Multibody approach for tolerance and optimization of mechanical systems,” Journal of Mechanical Science and Technology, pp. 276-286, 2008.
    [15] Tichkiewitch, S., Tollenaere, M. and Ray, P., “Advances in Integrated Design and Manufacturing in Mechanical Engineering II,” Springer, 2007.
    [16] Ded, K., “A fast and elitist multi-objective genetic algorithm: NSGA-II, ” Indian Inst. of Technol., 2002.
    [17] Hung, T.C. and Chan, K.Y., “Multi-objective design and tolerance allocation for single and multi-level systems,” Journal of Intelligent Manufacturing, pp. 559-573, 2011.
    [18] Altarazi, S.A., “Operational tolerance allocation and machine assignment under process capability and product value constraints,” Wichita State University, 2000.
    [19] “製程能力指數 Cpk,” Northwest Analytics. Retrieved from http://taiwan.vulcan-tech.com/cpk/.
    [20] Mazur, M., “Tolerance analysis and synthesis of assemblies subject to loading with process integration and design optimization tools,” RMIT University Melbourne, 2013.
    [21] Dimitrellou, S.C., Diplaris, S.C. and Sfantsikopoulos, M.M., “A systematic approach for cost optimal tolerance design,” In Proceedings of the International Conference On Engineering Design-ICED’07, pp. 28-31, 2007.
    [22] Yeo, S.H., Ngoi, B.K.A., Poh, L.S. and Hang, C., “Cost-Tolerance Relationships for Non-Traditional Machining Processes,” The international journal of advanced manufacturing technology, pp. 35-41, 1997
    [23] Taguchi., G., “Quality engineering in production System,” McGraw-Hill, New York, 1989.
    [24] Taguchi., G., “On Robust Technology Development,” ASME Press, New York, 1993.
    [25] Krishnaswami, M., Mayne, R.W., “Optimizing tolerance allocationbased on manufacturing cost and quality loss,” Adv. Design Automat., ASME, DE-Vol. 69-1, 1994.
    [26] Jayaprakash, G. and Sivakumar, K., “Parametric Tolerance Analysis of Mechanical Assembly Using FEA and Cost Competent Tolerance Synthesis Using Neural Network,” Shivani Engineering College, 2010.
    [27] Jayaprakash, G. and Sivakumar, K., “Parametric tolerance analysis of mechanical assembly using FEA and cost competent tolerance synthesis using neural network,” Journal of Software Engineering and Applications, pp. 1148, 2010.
    [28] Krishnaswami, M., Mayne, R.W., “Optimizing tolerance allocationbased on manufacturing cost and quality loss,” Adv. Design Automat., ASME, DE-Vol. 69-1, 1994.
    [29] Wu, C.C., “Component tolerance design for minimum quality loss and manufacturing cost,” National Taiwan University of Science and Technology, 1997.
    [30] 上銀科技股份有限公司, “多軸機器人綜合型錄, ” http://www.hiwin.tw/download/tech_doc/robot/Multi_Axis_Robot-(C).pdf, 台中市精密機械園區精科路7號, 2016.

    下載圖示 校內:2019-09-01公開
    校外:2019-09-01公開
    QR CODE