| 研究生: |
陳良益 Chen, Liang-Yih |
|---|---|
| 論文名稱: |
奈米晶體複合薄膜在磨潤與光電性質之研究 The study of Tribological and Optoelectronic Properties of Nanocrystal composite films |
| 指導教授: |
洪昭南
Hong, Chau-Nan Franklin |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 289 |
| 中文關鍵詞: | 奈米晶體 、光電元件 、磨潤性質 |
| 外文關鍵詞: | tribological behavior, optoelectronic device, nanocrystal |
| 相關次數: | 點閱:100 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文的研究方向有二:第一部份主要是研究類鑽碳奈米複合薄膜的機械與磨耗性質與探討薄膜沉積時奈米粒子的形成機構;第二部份則是針對矽奈米晶體複合薄膜的光電性質、結構分析以及光電元件的製作與電性量測分析。
在類鑽碳奈米複合薄膜的研究方面,主要是針對傳統的類鑽碳薄膜在應用上具有的缺點來進行改良。由於類鑽碳膜具有極佳的物理與化學特性,因此可應用於模具、光學元件與生醫材料等方面。然而因為類鑽碳膜的成長機構中,是藉由鍍膜離子的能量大小來進行薄膜性質的控制。欲沉積硬度較高的類鑽碳膜,通常必須在較高的離子能量下進行薄膜的沉積,但也容易在薄膜中存在頗高的殘留應力,而造成類鑽碳薄膜與試件之間無法擁有良好的附著性。因此在本研究中將利用含有Si-C-O等元素的Hexamethylsiloxane,HMDSO為反應物進行薄膜的沉積。所形成的HMDSO膜進行結構鑑定,以XPS光譜分析薄膜的鍵結型態,推測內部具有Si-O所組成的奈米粒子,再藉由高解析穿透分析式電子顯微鏡確定該奈米粒子的存在與大小,以確定HMDSO膜為類鑽碳奈米複合薄膜。
將HMDSO膜沉積於前處理的SDK11鋼材,進行磨耗測試。測試的結果顯示:所形成的類鑽碳奈米複合薄膜與鋼材基板之間具有良好的附著力,同時又具有釋放殘留應力的能力,因此可以沉積較厚的薄膜於鋼材基板上。經由實驗條件的調整,利用多層鍍膜的方式(a-C:H/HMDSO)可以在鋼材基板上沉積硬度值達18 GPa,厚度為1mm,但殘留應力僅有1~2 GPa的薄膜。
同時,在本論文中以含有Si-C、Si-C-N的有機金屬化合物進行鍍膜,藉此進行類鑽碳膜奈米粒子的形成機制。經高解析穿透分析式電子顯微鏡進行微結構分析亦可觀察到奈米粒子(晶體)的存在,惟使用的反應物不同,所形成的奈米粒子型態與結晶狀態也不相同。若以電容式電漿通入HMDSO為反應物進行薄膜沉積,由高解析穿透分析式電子顯微鏡分析並未有奈米晶體存在。由此看來,反應物的種類並非奈米晶體形成機構的主要因素。在本論文中將藉由分析感應耦合電漿中的電子溫度與電子密度,推測類鑽碳奈米複合薄膜的形成機構與使用的感應耦合式電漿系統有關,但所形成的奈米粒子種類則與所使用的有機金屬反應物有關。
本論文並以感應耦合電漿輔助電子槍蒸鍍方式來成長矽奈米晶體複合薄膜,並進一步將所沉積的薄膜進行材料結構、光電性質、元件電性與發光性質的分析。由高解析穿透分析式電子顯微鏡顯示此奈米粒子複合薄膜是以非晶質的氮化矽為基質包覆矽奈米晶體所形成。由螢光光譜的分析中可發現,所沉積的矽奈米晶體複合薄膜,其發光光譜位於450 nm (相當於3.0 eV能帶間隙),與一般文獻中記載的矽奈米晶體複合薄膜的發光光譜位於紅光波段並不相同。此外,由於氮化矽的能帶間隙為4.1 eV,遠較矽奈米晶體的能帶間隙1.8 eV高,且分析矽奈米晶體與氮化矽相對的能帶關係可知:以此矽奈米晶體複合薄膜作為光電元件的發光層,寬能隙的氮化矽具有侷限陰極與陽極所注入的電子與電洞,而使電子與電洞得以在發光作用層的發光中心結合,以產生激發光的功能。
在光電元件的電性研究方面,藉由改變氣相中不同的N2、H2與Ar的比例進行矽奈米晶體複合薄膜的沉積。由電流與電壓之間的量測分析可知,隨著氣相中的N2比例愈高,電子與電洞被侷限的效果就愈明顯,且電流與電壓的關係呈現二極體的關係。此外,亦嚐試瞭解不同的低功函數材料作為元件陰極的影響,由實驗的結果發現,以Ca/Ag來取代Al為陰極材料,可以使輝度提升一倍以上。
Two subjects on the nanocomposite films have been studied. The first is the deposition of diamond-like carbon nanocomposite films for tribological applications. The formation mechanism of nanoparticles embedded in diamond-like carbon matrices was investigated. The second is the study of the optoelectronic properties, nano-structure and electric properties of silicon nanocrystal composite films. The optoelectronic device was fabricated with the nanocomposite films.
In studying the diamond-like nanocomposite films, the major efforts have been concentrated on overcoming the problems of conventional diamond-like carbon (a-C:H or DLC) films, such as high residual stresses, poor adhesion, etc. DLC films have attracted widespread attention due to their great potentials in high tech tribological industries, optical device and biological materials, etc. However, the properties of DLC films depend mainly on the ion impact energy, which is a critical factor determining the fraction of sp3 carbon and the hydrogen content in the dense random carbon network. When the ion impact energy is high, the DLC films have large residual stresses resulting in poor film adhesion on the substrate and coating. In this study, Si-C-O organometallic precursor (HMDSO) was employed to deposit modified the diamond-like carbon films. X-ray photoemission spectroscopy (XPS) analysis suggested that nanoparticles were formed embedded in the diamond-like carbon matrices. According to the analysis with high-resolution analytical electron microscopy (HRAEM), we observed amorphous SiOx nanoparticles were formed in the diamond-like carbon films.
HMDSO films were deposited on the nitrided and Cr-plated SKD11 steel substrates to analyze the tribological properties. The adhesion between the HMDSO films and the steel substrate was formed to be improved over the conventional DLC films. Due to the fact that HMDSO films could release compressive stresses, the thickness of the film could be larger than 1 mm. By modulating the experimental conditions, we can deposit a-C:H/HMDSO multilayer on the steel substrates. The residual stress of the film was reduced from 15 GPa to 2 GPa and the hardness was maintained at about 16 GPa.
We also studied the mechanism of nanoparticle formation. Another organometallic precursor containing Si-C and Si-C-N was employed to deposit diamond-like nanocomposite films. Based on HRAEM, we also observed that nanoparticles were embedded in the amorphous diamond-like carbon matrix. The main difference is the shape of nanoparticles. When we deposit HMDSO films by capacitance-coupled plasma, the films contained no nanoparticle. By measurement with a Langmuir electrostatic probe, the electron temperature and density of the plasma were obtained. Finally, we concluded that the nanoparticle formation mechanism were related with the inductively-coupled plasma, and the shapes of nanoparticles were depended on the precursors.
The silicon nanocrystal composite films were deposited by the inductively-coupled plasma assisted electron-gun evaporation. Silicon nanocrystals were found to be embedded in the amorphous silicon nitride matrix. From photoluminescence spectroscopy measurement, the emission peak was about 450 nm different from the results in literature. The band gap of the amorphous silicon nitride is about 3.5 eV larger than that of the silicon nanocrystals (~1.8 eV). Silicon nitride has a large band gap to confine electrons and holes within silicon nanocrystal fro further recombination and photon emission. Therefore, we can use the silicon nanocrystal composite layer as the active layer for light emission.
For the device fabrication, we modulate the compositions of N2, H2 and Ar to deposit various silicon nanocrystal composite films. The J-V curve shows that the device has diode characteristics and the effect of electron and hole confined was enhanced by increasing the N2 composition in the gas during depositions. Additionally, various low work function materials were employed as the cathode material to improve the electron injection. The luminance was increased by using the Ca/Ag cathode to replace Al as cathode.
[1] http://www.zyvex.com/nanotech/feynman.html
[2]. H. W. Kroto, J. R. Heath, S. C. O’Brien, R. E. Smalley, Nature, 318, 162-164 (1985).
[3] (a) D. M. Eigler, E. K. Schweizer, Nature, 344, 524 (1990); (b) http://www.research.ibm.com/nanoscience/index1.html.
[4] Sumio Iijima, Nature, 354, 56 (1991).
[5] Zhen Yao, Henk W. Ch. Postma, Leon Balents and Cees Dekker, Nature, 402, 273 (1999).
[6] Jesper Nygard, David Henry Cobden and Poul Erik Lindelof, Nature, 408, 342 (2000).
[7] Pilips G. Collins, A. Zettl, Hiroshi Bando, Andreas Thess, and R. E. Smalley, Science, 278, 100 (1997).
[8] “改變世界的納米技術”,黃德歡,台北瀛舟出版社,2002年3月.
[9] a)Philippe Poncharal, Z. L. Wang, Daniel Ugarte, and Walt A. de Heer, Science, 283, 1513 (1999).
[10] Z. L. Wang, P. Poncharal, and W. A. de Heer, Pure Appl. Chem., 72(1), 209, 2000.
[11] R. W. Hertzberg, Deformation and Fracture Mechanics of Engineering Materials, 3rd ed. (Wiley, New York, 1989).
[12] A. A. Griffith, Philos. Trans. R. Soc. Lond. Ser. A 22(4), 13 (1920).
[13] a) J. S. Koehler, Phys. Rev. B. 2(2), 547 (1970); b) Stan Vepřek, Thin Solid Films, 297, 145 (1997); b) Chia-Chun Chen, A. B. Herhold, C. S. Jhnson, A. P. Alivisatos, Science, 276, 398 (1997).
[14] E. G. Spence, P. H. Schmidt, D. H. Joy, and F. J. Sansalone, Appl. Phys. Lett. 29, 118 (1976).
[15] a) J. Robertson, J. Non-Cryst. Solid, 164-166, 1115 (1993); b) C. A. David, Thin Solid Films, 226, 30 (1993); Y. Lifshitz, S. R. Kasi, J. W. Rabalais, and W. Eckstein, Phys. Rev. B, 41(15), 10468 (1990).
[16] S. S. Camargo Jr., R. A. Santos, W. Beyer, Diamond and Related Materials 9, 658 (2000).
[17] Myeong-Geun Kim, Kwang-Ryeol Lee, Kwang Yong Eun, Surf. & Coat. Technol., 112, 204 (1999).
[18] a) Q. F. Huang, S. F. Yoon, Rusli, K. Chew, and J. Ahn, J. Appl. Phys. 90(9), 4520 (2001); b) Ivan R. Videnović, Verena Thommen, and Peter Oelhafen, Daniel Mathys, Marcel Düggelin, abd Richard Guggenheim, Appl. Phys. Lett. 80(16), 2863 (2002); c) Da-Yung Wnag, Ko-Wei Weng, Shi-Yao Hwang, Diamond and Related Materials 9, 1762 (2000).
[19] M. P. Siegal, J. C. Barbour, P. N. Provencio, D. R. Tallant, and T. A. Friedmann, Appl. Phys. Lett. 73(6), 759 (1998).
[20] Jianjun Dong and David A. Drabold, Phys. Rev. B 57(24), 15591 (1998).
[21] F. Cellier, J. F. Nowak, Diamond and Related Materials, 3, 1112 (1994).
[22] Throu Hara, Kouichi Yani, Ken Inoue, Shigeaki Nakamura, and Takwshi Murai, Appl. Phys. Lett. 57(16), 1662 (1990).
[23] J. Sasaki, K. Hayyashi, K. Sugiyama, O. Ichiko, and Y. HaShiquchi, Surf. & Coat. Technol., 65, 160 (1994).
[24] X. Wang, H. Harris, F.Temkin, and S. Gangopadhyay, M. D. Strathman and M. West, Appl. Phys. Lett. 78(20), 3079 (2001).
[25] E. Tomasella, C. Meunier, S. Mikhailov, Surf. Coat. Technol. 141, 286 (2001).
[26] M. Gioti, D. Papadimitriou, S. Logotheridis, Diamond and Related Materials, 9, 741 (2000).
[27] S. Logothetidis, Appl. Phys. Lett. 69, 158 (1996).
[28] a) Katsuyuki Okada, Shojiro Komatsu, Takamasa Ishigaki, and Seiichiro Matsumoto, Mat. Res. Soc. Symp. Proc. 363, 157 (1995); b) Hosun Lee and In-Young Kim, S.-S. Han, and B.-S. Bae, M. K. Choi, and In-Sang Yang, J. Appl. Phys. 90(2), 813, (2001)
[29] Liang-Yih Chen and Franklin Chau-nan hong, Appl. Phys. Lett. 82(20), 3526 (2003).
[30] T. A. Friedmann, K. F. McCarty, J. C. Barbour and M. P. Siegal, Dean C. Dibble, Appl. Phys. Lett. 68(12), 1643 (1996).
[31]T. W. Mercer, M. J. Dinardo, J. B. Rothman, M. P. Siegal and T. A. Friedmann, L. J. Martinez-Miranda, Appl. Phys. Lett. 72(18), 2244 (1998).
[32] M. Chhowalla, C. A. Davis, M. Weiler, B. Kleinsorge, and G. A. J. Amaratunga, J. Appl. Phys. 79, 2237 (1996).
[33] D. R. McKenzie, D. Muller, and B. A. Pailthorpe, Phys. Rev. Lett. 67(6), 773 (1991).
[34] T. Hioki, K. Okumura, Y. Ltoh, S. Hibi and S. Noda, Surf. Coat. Technol. 65, 106 (1994).
[35] N. Takada, K. Shibagaki, K. Sasaki, and K. Kadota, K.-I. Oyama, J. Vac. Sci. Technol. A 19(2), 689 (2001).
[36] JiangHing Zhu, W. Thomas Leach, Scott K. Stanley, and John G. Ekerdt, and Xiaoming Yan, J. Appl. Phys. 92(8), 4695 (2002).
[37] D. Das, J. Farjas, and P. Roura, G. Viera, and E. Bertran, Appl. Phys. Lett. 79(22), 3705 (2001).
[38] F. Gourbilleau, X. Portier, C. Termon, P. Voivenel, R. Madelon, and R. Rizk, Appl. Phys. Lett. 78(20), 2058 (2001).
[39] Raùl Gago and Luis Vázquez, Rodolfo Cuerno, Mariá Varela and Carmen Ballesreros, José Mariá Albella, Appl. Phys. Lett. 78(21), 3316 (2001).
[40] L. X. Yi, J. Heitmann, R. Scholz, and M. Zacharias, Appl. Phys. Lett. 81(22), 4248 (2002).
[41] Q. Wan, T. H. Wang, M. Zhu and C. L. Lin, Appl. Phys. Lett. 81(3), 538 (2002).
[42] R.G. Elliman, M. J. Lederer and B. Luther-Davies, Appl. Phys. Lett. 80(8), 1324 (2002).
[43] Tsutomu Shimizu-Lwayama, Norihiro Kurumado, David E. Hole and Peter D. Townsend, J. Appl. Phys. 83(11), 6018 (1998).
[44] V. Petrova-Koch, T. Muschik, A. Kux, B. K. Meyer, and F. Koch, V. lehmann, Appl. Phys. Lett. 61(8), 943 (1992).
[45] K. Hata, M. Fujita, S. Yoshida, S. Yasuda, T. Makimura, K. Murakami, W. Mizutani and H. Tokumoto, Appl. Phys. Lett. 79(5), 692 (2001).
[46] Takehito Yoshida, Shigeru Takeyama, Yuka Yamada, Katsuhiko Mutoh, Appl. Phys. Lett. 68(13), 1772 (1996).
[47] Shin Yokoyama, Kenji Ohba, and Anri Nakajima, Appl. Phys. Lett. 79(5), 617 (2001).
[48] H. Morisaki, F. W. Ping, H. Ono, and K. Yazawa, J. Appl. Phys. 70(3), 1869 (1991).
[49] Yoshihiko Kanemitsu, Tetsuo Ogawa, Kenji Shiraishi, and Kyozaburo Takeda, Phys. Rev. B., 48(7), 4883 (1993).
[50] B. Abeles and T. Tiedje, Phys. Rev. Lett. 51(21), 2003 (1983).
[51] Nae-Man Park, Tae-Soo Kim, and Seong-Ju Park, Appl. Phys. Lett. 78(17), 2575 (2001).
[52] G. Vijaya Prakash, M. Cazzanelli, Z. Gaburro, and L. Pavesi, F. Iacina, G. Franzò and F. Priolo, J. Appl. Phys. 91(7), 4607 (2002).
[53] J. Valenta, I. Pelant, J. Linnros, Appl. Phys. Lett. 81(8), 1396 (2002).
[54] photonic crys
[55] T. Baron, P. Gentile, N. Magnea, P. Mur, Appl. Phys. Lett. 79(8), 1175 (2001).
[56] Yuhei Ito, Tsuyoshi Hatano, Anri Nakajima, and Shin Yokoyama, Appl. Phys. Lett. 80(24), 4617 (2002).
[57] a) Q. Wan, T. H. Wnag, M. Zhu and C. L. Lin, Appl. Phys. Lett. 81(3), 538 (2002); b) Y. T. Tan, T. Kamiya, Z. A. k. Durrani, and H. Ahmed, J. Appl. Phys. 94(1), 633 (2003).
[58] T. M. Brown and R. H. Friend, I. S. Millard, D. J. Lacey, and J. H. Burroughes, F. Cacialli, Appl. Phys. Lett. 79(2), 174 (2001).
[59] V.-E. Choong, M. G. Mason, C. W. Tang, and Y. Gao, Appl. Phys. Lett. 72, 2689 (1998).
[60] Donald A. Neamen, “Semiconductor Physics & Devices: Basic Principles”, 2nd Ed., McGraw-Hill, 1997.
[61] I-Min Chan, Weng-Cheng Cheng and Francklin C. Hong, Appl. Phys. Lett. 80(7), 13 (2002).
[62] I-Min Chan, Tsung-Yi Hsu, and Franklin C. Hong, Appl. Phys. Lett. 81(10), 1899 (2002).
[63] Tetsuya Yamamoto, and Hiroshi Katayama-Yoshida, Jpn. J. Appl. Phys. 38, L166 (1999).
[64] Kazunori Minegishi, Yasushi Koiwai, Yukinobu Kikuchi, Koji Yano, Masanobu Kasuga and Azuma Shimizu, Jpn. J. Appl. Phys. 36, L1453, 1997.
[65] D. C. Look, J. W. Hemsky, and J. R. Sizelove, Phys. Rev. Lett. 82, 2552 (1999).
[66] S. Aisenberg and R. Chabot, J. Appl. Phys. 53, 2953 (1971).
[67] Sol. Aisenberg and Ronald Chabot, J. Appl. Phys. 42, 2953 (1971).
[68] E. G. Spencer, P. H. Schmidt, D. H. Joy, and F. J. Sansalone, Appl. Phys. Lett. 29, 118 (1976).
[69] F. Demichelis, A. Tagliaferro, and D. Das Gupta, Surf. Coat. Technol. 47, 218 (1991).
[70] Fred M. Kimock and Bradley J. Knapp, Surf. Coat. Technol. 56, 273 (1993).
[71] John C. Angus and Cliff C. Hayman, Science 241, 913 (1988).
[72] J. C. Angus and F. Jansen, J. Vac. Sci. Technol. A 6, 1778 (1988).
[73] C. De Martino, F. Semichelis, A. Tagliaferro, Diamond Relat. Mater. 4, 1210 (1995).
[74] a) C. Z. Wang and K. M. Ho, Phy. Rev. B 50(17), 12429 (1993); b) Rainer Haerle, Elisa Riedo, Alfredo Pasquarello, amd Afonso Baldereschi, Phys. Rev. B. 65, 045101 (2001).
[75] a) P. C. Kerlires, C. H. Lee, and W. R. Lambrecht, J. Non-Cryst. Solids 164-166, 1131 (1993); b) J. Robertson, J. Non-Cryst. Solids, 198-200, 615 (1996).
[76] V. F. Dorfman, Thin Solid Films, 212, 267 (1992).
[77] B. Dorfman, M. Abraizov, Fred H. Pollak, D. Yan, M. Strongin, X.-Q. Yang and Z.-Y. Rong, Mat. Res. Soc. Symp. Proc. 349, 547 (1994).
[78] V. F. Dorfman, A. Bozhko, B. N. Pypkin, R. T. Borra, A. R. Srivatsa, H. Zhang, T. A. Skotheim, J. Khan, D. Rodichev, and G. Kirpilenko, Thin Solid Films, 212, 274 (1992).
[79] B. Dorfman, M. Abraizov, B. Prpkin, M. Strongin, X.-Q. Yang, D. Yan, Fred H. Pollak, J. Grow and R. Levy, Mat. Res. Soc. Symp. Proc. 351, 43 (1994).
[80] Xing-Zhao Ding, Fu-Min Zhang, Xiang-Huai Liu, P. W. Wnag, W. G. Durrer, W. Y. Cheung, S. P. Wong, I. H. Wilson, Thin Solid Films, 346, 82 (1999).
[81] Ling-Yih Chen and Franklin Chau-Nan Hong, Diamond and Related Materials, 10, 1058 (2000).
[81] V. V. Voevodin, J. S. Zabinski, Diamond and Related Materials, 7, 463 (1998).
[82] V. V. Voevodin, S. V. Peasas, and J. S. Zabinski, J. Appl. Phys. 82(2), 855 (1997).
[83] V. V. Voevodin, M. A. Capano, A. J. Safriet, M. S. Donley, and J. S. Zabinski, Appl. Phys. Lett. 69(2), 188 (1996).
[84] V. V. Voevodin, J. P. O’Neill, J. S. Zabinski, Surf. & Coat. Technol. 116-119, 36 (1999).
[85] G. A. J. Amaratunga, M. Chhowalla, C. J. Kiely, I. Alexandrou, R. Aharonov, and R. M. Devenish, Nature, 383, 321 (1996).
[86] M. P. Siegal, P. N. Provencio, D. R. Tallant, and R. L. Simpson, B. Kleinsorge and W. I. Milne, Appl. Phys. Lett. 76(15), 2047 (2000).
[87] T. A. Friedmann, J. P. Sullivan, J. A. Knapp, D. R. Tallant, and D. M. Follstaedt, D. L. Medlin, and P. B. Mirkarimi, Appl. Phys. Lett. 71(26), 3820 (1997).
[88] M. P. Siegal, J. C. Barbour, P. N. Provencio, D. R. Tallant, and T. A. friedmann, Appl. Phys. Lett. 73(6), 759 (1998).
[89] L. J. Martinez-Miranda, M. P. Siegal, amd P. P. Provencio, Appl. Phys. Lett. 79(4), 542 (2001).
[90] a) M. P. Siegal and D. R. Tallant, L. J. Martinez-Miranda, J. C. Barbour, R. L. Simpson, and D. L .Overmyer, Phys. Rev. B 61(15), 10451 (2000); b) M. P. Siegal, D. R. Tallant, P. N. Provencio, D. L. Overmyer, and R. L. Simpson, L. J. Martinez-Miranda, Appl. Phys. Lett. 76(21), 3052 (2000).
[91] J. Musil, J. Vlček, Thin Solid Films, 343-344, 47 (1999)
[92] C. Mitterer, P. H. Mayrhofer, M. Beschkiesser, P. Losbichler, P. Warbichler, F. Hofer, P. N. Gibson, W. Gissler, H. Hruby, J. Musil, J. Vl ček, Surface & Coat. Technol., 120-121, 405 (1999).
[93] J. Musil, Surface & Coat. Technol., 125, 322 (2000).
[94] Stan Vepřek, J. Vac. Sci. Technol A, 17(5), 2401 (1999).
[95] S. Vepřek, S. Reiprich, Thin Solid Films, 268, 64 (1995).
[96] S. Vepřek, S. Reiprich, and Li Shizhi, Appl. Phys. Lett., 66(20), 2640 (1995).
[97] S. Vepřek, M. Haussmann, and S. Reiprich, J. Vac. Sci. Technol A, 14(1), 46 (1996).
[98] S. Vepřek, M. Hsussmann, S. Reiprich, Li Shizhi, J. Dian, Surf. & Coat. Technol., 86-87, 394 (1996).
[99] Stan Vepřek, Thin Solid Films, 297, 145 (1997).
[100] S. Vepřek, Surf. & Coat. Technol., 97, 15 (1997).
[101] S. Vepřek, P. Nesládek, A. Niederhofer and F. Glatz, Nanostrucured Materials, 10(5), 679 (1998).
[102] Stan Vepřek, Thin Solid Films, 317, 449 (1998).
[103] a)S. Vepřek, P. Nesládek, A. Niederhofer, F. Glatz, M. ilek, M. Šima, Surf. & Coat. Technol., 108-109, 138 (1998); b) A. Niederhofer, K. Moto, P. Nesiadek and S. Vepřek, Phys. Rev. B (submitted).
[104] http://www.nature.com/nature/fow/001123.html
[105] 賴宏仁,奈米材料與技術專題,工業材料153期, 94 (1999).
[106] Louis Brus, J. Phys. Chem. 90, 2555 (1986).
[107] E. Kaxiras, Phys. Rev. Lett. 64(5), 551 (1990).
[108] C. H. Pattersson and R. P. Messmer, Phys. Rev. B 42, 7530 (1990).
[109] D. A. Jelski et al. J. Chem. Phys, 95, 8552 (1991).
[110] Ursula Röthlusberger, Wanda Andreoni and Michele Parrinello, Phys. Rev. Lett. 72(5), 665 (1994).
[111] Lei Liu, C. S. Jayanthi, and Shi-Yu Wu, J. Appl. Phys. 90(8), 4143 (2001).
[112] R. O. Jones, B. W. Clare and P. J. Jennings, Phys. Rev. B. 64, 125203 (2001).
[113] R. Rossetti, R. Hull, J. M. Gibson, L. E. Brus, J. Chem. Phys. 83, 1406 (1985).
[114] W. D. Knight, K. Clemenger, W. A. deHeer, W. A. Saunders, M. Y. Chou, M. L. Cohen, Phys. Rev. Lett. 52, 2141, (1984).
[115] L. E. Brus, J. Chem. Phys. 80, 4403, (1984).
[116] Y. Arakawa and H. Sakaki, Appl. Phys. Lett. 40(11), 939 (1982).
[117] G. D. Gilliland, Mater. Sci. and Eng. R18(3), 99 (1997).
[118] a) The Physics of Low-Dimensional Semiconductors: An Introduction, John H. Davies, Cambridge University press, New York, 1998; b) Nanomaterials: Synthesis, Properties and Applications, A. S. Edelstein and R. C. Cammarata, Institute of Physics publish, London, 1996.
[119] L. T. Canham, Appl. Phys. Lett. 57, 146 (1990)
[120] Toshihide Takagahara, Kyozaburo Takeda, Phys. Rev. B. 46(23), 15578 (1992).
[121] T. P. Pearsall, J. Bevk, L. C. Feldman, J. M. Bonar, J. P. Nabbaerts, and A. Qurmazd, Phys. Rev. Lett. 58, 729 (1987).
[122] K. Takeda, K. Shiraishi, and N. Matsumoto, J. Am. Chem. Soc. 112, 5043 (1990).
[123] S. Gardelis, J. S. Rimmer, P. Dawson, B. Hamilton, R. A. Kubiak, T. E. Whall and E. H. C. Parker, Appl. Phys. Lett. 59, 2118 (1991).
[124] B. Delley and E. F. Steigmeier, Phys. Rev. B. 47(3), 1397, (1993).
[125] F. Fehér, Molekülspekroskopische Untersuchungen auf dem Gebiet der Silane und der Heterocyclischen Sulfane, Forschungsbericht des Landes Nordrhein-Westfalen, West-deutscher Verlag, Köln, 1977.
[126] Y. Kanemitsu, H. Uto, Y. Matsumoto, and H. Minura, Phys. Rev. B 48, 2827 (1993).
[127] S. M. Prokes, O. J. Glembocki, Phys. Rev. B 49, 2238 (1994).
[128] S. M. Prokes, O. J. Glembocki, and V. M. Bermudez, Phys. Rev. B. 45, 13788 (1992).
[129] P. M. Fauchet, L. Tsybeskov, and C. Peng, SPIE 2131, 155 (1994).
[130] L. Heikklä, T. Kuusela, H.-P. Hedman, J. Appl. Phys. 89(4), 2179 (2001).
[131] a) L. Pavesi, L. Del Negro, C. Mazzoleni, G. Franzó, and F. Priolo, Nature, 408, 440 (2000); b) Leigh Canham, Nature, 408, 411 (2000).
[132] J. Robertson and M. J. Powell, Appl. Phys. Lett. 44, 415 (1984)
[133] Chi-mei Mo, Lide Zhang Cunyi, and Tao Wang, J. Appl. Phys. 73(10), 5185 (1993).
[134] Jakob Schiotz, Francesco D. Si Tolla and Karsten W. Jacobsen, Nature, 391, 561 (1998).
[135] a) A. C. Ferrari and J. Robertson, Phys. Rev. B 61(20), 14095 (2000); b) A. V. Baranov, A. N. Bekhterev, Y. S. Bobovich, and V. I. Petrov, Opt. Spektrosk. 62, 1036 (1987).
[136] F. Tuinstra and J. L. Koenig, J. of Chem. Phys. 53(3), 1126 (1970).
[137] a) S. A. Solin, Physica B 99, 443 (1980); b) C. Mapelli, C. Castiglioni, and G. Zerbi, K. Müllen, Phys. Rev. B 60(18), 12710 (1999).
[138]何主亮、常挽攔、陳育智,真空科技,9卷2期,34 (1996).
[139] Hsiao-Chu Tasi, D. B. Bogy, M. K. Kundmann, D. K. Veirs, M. R. Hilton, and S. T. Mayer, J. Vac. Sci. Technol. A 6(4), 2367 (1988).
[140] a) M. A. Tamor and W. C. Vassell, J. Appl. Phys. 76(6), 3823 (1994); b) Bruno Marchou, Jing Gui, Kevin Grannen, Gary C. Rauch, Joel W. Ager III, S. R. P. Silva, and J. Robertson, IEEE Transactions on Magnetics, 33(5), 3128 (1997).
[141] T. E. Doyle and J. R. Dennison, Phys. Rev. B 51(1), 196 (1995).
[142] M. Chhowalla, A. C. Ferrari, J. Robertson, and G. A. J. Amaratunga, Appl. Phys. Lett. 76(11), 1419 (2000).
[143] S. E. Rodil, A. C. Ferrari, J. Robertson, and W. I. Milne, J. Appl. Phys. 89(10), 5425 (2001).
[144] A. C. Ferrari and J. Robertson, Phys. Rev. B 64, 075414-1 (2001).
[145] S. M. Hung, Z. Sun, Y. F. Lu, M. H. Hong, Appl. Phys. A. 74(2), 213 (2001).
[146] J. J. Shiang, A. N. Goldstein, and A. P. Alivisatos, J. Chem. Phys. 92(5), 3232 (1990).
[147] M. A. Capano, N. T. McDeutt, R. K. Singh and F. Qian, J. Vac. Sci. Technol. A 14(2), 431 (1996).
[148] J. Robertson, Surf. Coat. Technol. 50, 185 (1992).
[149] O. A. Popov, J. Vac. Sci. Technol. A 9, 711 (1989).
[150] P. Reinke, W. Jacob, W. Möller, J. Appl. Phys. 74(2), 1354 (1993).
[151] K. Maruyama, T. Inoue, M. Yamamoto, T. Morinaga, H. Saitoh, K. Kamata, J. Mater. Sci. Lett. 13, 1793 (1994).
[152] J. E. Stevens, M. J. Sowa, J. L. Cecchi, J. Vac. Sci. Technol. A 13(5), 2476 (1995).
[153] Ratsuyuki Okada et al, Mater. Res. Soc. Sympo. Proc. 363, 157 (1995).
[154] A. Vanhulsed, J. P. Celis, E. Dekempeneer, J. Meneve, J. Smeets, K. Vercammen, Diamond and Related Materials 8, 1193 (1999).
[155] J. H. Keller, J. C. Forster, M. S. Barnes, J. Vac. Sci. Technol. A 11(5), 2487(1993).
[156] D. L. Pappas, J. Hopwood, J. Vac. Sci. Technol. A 12(4), 1576 (1994).
[157] V. Vahedi, M. A. Lieberman, G. Dipeso, T. D. Rognlien, D. Hewett, J. Appl. Phys. 78(3), 1446 (1995).
[158] Stoney’s equation
[159] Jung H. Lee, Dong S. Kim, Young H. Lee, and Bakhtier Farouk, Thin Solid Films 280, 204 (1996).
[160] S. Logothetidis, M. Gioti, Mater. Sci. and Eng. B 46, 119 (1997).
[161] a) J. Wagner, M. Ramsteiner, Ch. Wild, P. Koidl, Phys. Rev. B 40, 1817 (1989); b) Fortunato Neri, Sebastiano Trusso, Cirino Vasi, Francesco Barreca Paolo Valisa, Thin Solid Films 332, 290 (1998).
[162] a) S. Liu, S. Gangopadhyay, G. Sreenivas, S. S. Ang, and H. A. Naseem, Phys. Rev. B 55, 13020 (1997); b) K. Ogaya, J. Fernando, D. Chubaci, and F. Fujimoto, J. Appl. Phys. 76, 3791 (1994); c) A. A. Konchits, M. Ya. Valakh, B. D. Shanina, S. P. Kolesnik, and I. B. Yanchuk, J. D. Carey and S. R. P. Silva, J. Appl. Phys. 93(10), (2003), 5905.
[163] D. Beeman, J. Silverman, R. Lynds, M. R. Anderson, Phys. Rev. B 30, 870 (1984).
[164] Kirsten I. Schiffmann, Matthias Fryda, Günther Goerigk, Rolf Lauer, Peter Hinze, Andreas Bulack, Thin Solid Films 347, 60 (1999).
[165] X. L. Peng, T. W. Clyne, Diamond and Related Materials 7, 944 (1998).
[166] D. Neerinck, P. Persoone, M. Sercu, A. Goel, D. Kester, D. Bray, Diamond and Related Materials 7, 468 (1998).
[167] P. J. Burnett and D. S. Rickerby, Thin Solid Films 154, 403 (1987).
[168] H. Liu, A. Tanaka, K. Umeda, Thin Solid Films 346, 162 (1999).
[169] Weng-Jin Wo, Min-Hsiung Hon, Surf. Coat. Technol. 111, 124 (1999).
[170] a) J. Meneve, R. Javobs, L. Eersels, J. Smeets, E. Dekempeneer, Surf. Coat. Technol. 62, 577 (1993); b) R. Kalish, Y. Lifshitz, K. Nugent, and S. Prawer, Appl. Phys. Lett. 74(20), 2936 (1999); c) Simone Anders, Javier Diaz, Joel W. AgerIII, Roger Yu Lo and David B. Bogy, Appl. Phys. Lett. 71(23), 3367 (1997).
[171] a) M. A. Tamor, Applications of Diamond Films and Related Materials 3rd International Conference, 691 (1995); b) Won Jae Yang, Yong-Ho Choa, Tohru Sekino, Kwang Bo Shim, Koichi Nihara, Keun Ho Auh, Diamond and Relat. Mater. 434, 49 (2003).
[172] a) W. C. Oliver and G. M. Pharr, J. Mater. Res. 7, 1564 (1992); b) S. V. Hainsworth, H. W. Chandler, and T. F. page, J. Mater. Res. 11, 1987 (1996).; c) J. Malzbender, G. de With, and J. den. Toonder, J. Mater. Res. 15, 1209 (2000); d) M. Troyon, and M. Martin, Appl. Phys. Lett. 83(5), 863 (2003).
[173] Liang-Yih Chen and Franklin Chau-Nan Hong, Appl. Phys. Lett. 82(20), 3526 (2002).
[174] Liang-Yih Chen and Franklin Chau-nan Hong, Diamond and Related Materials, 2003 (acceptable).
[175] M. Grischke, A. Hieke, F. Morgenweck, H. Dimigen, Diamond and Related Materials, 7, 454 (1998).
[176] K. Trojan, M. Grischke, H. Dimigen, Phys. State. Sol. A 145, 575 (1994).
[177] M. Grischke, K. Bweilogua, J. Trojan, H. Dimigen, Surf. Coat. Technol. 74, 739 (1995).
[178] J. S. Chen, S. P. Lau, B. K. Tay, G. Y. Chen, Z. Sun, Y. Y. Tan, and G. Tan, J. W. Chai, J. Appl. Phys. 89(12), 7814 (2001).
[179] F. M. Fowkes, Chemistry and Physics of Interfaces, Amer. Chem. Soc., Washington, 1-12 (1965).
[180] J. R. Dann, J. Colloid and Interface Science, 32(2), 302 (1970).
[181] E. Lugscheider, K. Bobzin, M. Möller, Thins Solid Films 355, 367 (1999).
[182] a)J. P. Wolfe, Phys. Today, March 46 (1982); b) D. J. Lockwood, Solid-State Commun. 92, 101 (1994).
[183] Tsuyoshi Oguro, Hideki Koyama, Tsuyoshi Ozaki, and Nobuyoshi Koshida, J. Appl. Phys. 81(3), 1407 (1997).
[184] B. Gelloz, T. Nakagawa, and N. Koshida, Appl. Phys. Lett. 73(14), 2021 (1998),
[185] Bernard Gelloz and Nobuyoshi Koshida, J. Appl. Phys. 88(7), 4319 (2000).
[186] H. Takagi, H. Ogawa, Y. Yamazaki, A. Ishizaki, and T. Nakagiri, Appl. Phys. Lett. 56(24), 2378 (1990).
[187] a) M. Rückschloss, B. Landkammer, and S. Vepřek, Appl. Phys. Lett. 63(11), 1474 (1993); b) Hideki Tamura, Markus Rückschloss, Thomas Wirschem, and Stan Vepřek, Appl. Phys. Lett. 65(12), 1537 (1994).
[188] Anton Fojtik, Arnim Henglein, Chem. Phys. Lett. 221, 363 (1994).
[189] M. Ehbrechy, B. Kohn, and F. Huisken, M. A. Laguna, and V. Paillard, Phys. Rev. B 56(11), 6958 (1997).
[190] Toshihiko Toyama, Yoshihiro Kotani, and Hiroaki Okamoto, Hirotsgu Kida, Appl. Phys. Lett. 72(12), 1489 (1998).
[191] V. A. Gritsenko and P. A. Punder, Sov. Phys. Solid State 25, 901 (1983).
[192] A. Iqbal, W. B. Jackson, C. C. Tsai, J. W. Allen, and C. W. Bates, Jr., J. Appl. Phys. 61, 2947 (1987).
[193] J. Robertson and M. J. Powell, Appl. Phys. Lett. 44, 415 (1984)。
[194] G. Viera and M. Mikikian, E. Bertran, P. Roca I Cabarrocas, L. Boufendi, J. Appl. Phys. 92(8), 4684 (2002).
[195] a) S. S. Camargo, Jr., R. A. Santos, W. Beyer, Diamond and Relat. Mater. 9, 658 (2000); b) Myeong-Geun Kim, Kwang-Ryeol Lee, Kwang Yong Eun, Surf. & Coat. Technol. 112, 204 (1999); c) T. Hioki, K. Pkumura, Y. Itoh, S. Hibi and S. Noda, Surf. & Coat. Technol. 65, 106 (1994).
[196] a) X. Wang, H. Harris, H. Temki, and S. Gangopadhyay, M. D. Strathman and M. West, Appl. Phys. Lett. 78(20), 3079 (2001); b) Hosun Lee and In-Young Kim, S. –S. Han and B. –S. Bae, M. K. Choi and In-Sang Yang, J. Appl. Phys. 90(2), 813 (2001); c) M. Hakovitra, D. H. Lee, X. M. He, M. Nastasi, J. Vac. Sci. Technol. A 19(3), 782 (2001).
[197] a) Q. F. Huang, S. F. Yoon, Rusli, K. Chew, J. Ahn, J. Appl. Phys. 90(9), 4520 (2001); b) Ivan R. Videnovic, Verena Thommen, and Peter Oelhafrn, Daniel Mathys, Marcel Düggelin, and Richard Guggenheim, Appl. Phys. Lett. 80(6), 2863 (2002); Andreas Schüler, Ronald Gampp, and Peter Oelhafen, Phys. Rev. B. 60(23), 16164 (1999).
[198] a) J. Bandet, B. Despax, M. Caumont, J. Appl. Phys. 85(11), 7899 (1999); b) Valter Sergo, Giuseppe Pezzotti, Genkatagiri, Naoli Muraki, Toshihiko Nishida, J. Am. Cera. Soc. 79(3), 781 (1994); c) Giuseppe Pezzotti, Hiroyuki, Ichimaru, Luca Paolo Ferroni, Kiyoshi Hirao, Orfeo Sbaizero, J. Am. Cera. Soc. 84(8), 1785 (2001).
[199] a) K. Murayama, T. Toyama, S. Miyazaki, M. Hirose, J. Non-Cryst. Solids, 198-200, 792 (1996); b) M. Molinari, H. Rinnert and M. Vergnat, Appl. Phys. Lett. 77(22), 3499 (2000); c) M. Molinari, H. Rinnert and M. Vergnat, Appl. Phys. Lett. 79(14), 2172 (2001).
[200] Zingway Pei, Y. R. Chang, H. L. Hwang, Appl. Phys. Lett. 80(16), 2839 (2002).
[201] W. Skorupa, L. Rebohle, T. Gebel, Appl. Phys. A. 76, 1049 (2003).
[202] D. Scott, Treatises on Materials Science and Technology, Wear, vol. 13, Academic Press, New York, 1979.