簡易檢索 / 詳目顯示

研究生: 黃柏鈞
Huang, Bo-Jyun
論文名稱: 集總及分散動態系統彈性指標之數值計算策略
A Novel Numerical Strategy for Computing Flexibility Indices of Lumped and Distributed Dynamic Systems
指導教授: 張珏庭
Chang, Chuei-Tin
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 247
中文關鍵詞: 動態彈性指標操作限制常微分方程偏微分方程蒙地卡羅樹搜索演算法
外文關鍵詞: Dynamic flexibility analyses, Control constraint, Ordinary differential equations, Partial differential equation, Monte Carlo tree search algorithm
相關次數: 點閱:156下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 化工製程的設計在傳統上是只以經濟效益作為評估的標準,然而在實際操作情形下,系統中可能有某些參數因為不確定外部因素的干擾而導致系統逐漸偏離原先的設計,甚至致使系統無法操作。因此,除了經濟面的考量外,確保實際化工製程的操作彈性也是十分重要的設計考量。在過往的研究當中,已經針對動態系統定義了動態彈性指標(dynamic flexibility index, FId),作為參數不確定情況下動態系統的操作彈性評估標準,使設計者能以此指標作為設計衡量的依據。然而傳統的計算方法較無法有效率地計算動態彈性指標問題,因此本研究中開發了新的數值求解策略,即透過蒙地卡羅樹搜索演算法(monte-carlo tree search algorithm, MCTS)輔助傳統頂點法的頂點窮舉步驟,得到更佳的計算效率。本研究中藉由Python與GAMS撰寫程式,開發並實作新型求解策略。另外在過往的研究中尚未對具偏微分方程動態模式的動態系統之彈性分析有進一步的研究,因此將延伸所開發的新求解策略應用於該類動態系統,並對數個動態系統案例進行分析。而透過案例結果,驗證了新求解策略較過往計算策略具有更好的計算效率。

    The chemical processes are traditionally designed to maximize economic benefits according to nominal operating conditions and model parameters. However, in realistic processes, some parameters may deviate from their original design values due to uncertain external disturbances and/or inaccurate model formulations. These deficiencies may result in off-spec products and even cause the operation infeasible. Therefore, other than the economic criteria, it is equally important to consider the operational flexibility in process design. Although the dynamic flexibility index ({
    m FI}_d) has often been adopted as a performance index, the existing calculation methods are not efficient enough for practical applications. Therefore, a novel numerical strategy has been developed in this study to address this important issue. In particular, the Monte Carlo tree search algorithm (MCTS) is utilized to speed up the vertex enumeration step. Then, the variable neighborhood search (VNS) algorithm could be utilized to approach the exact solution form the results of MCTS. In this study, Python and GAMS were used to construct the code to implement the proposed numerical strategies. It should be noted that these strategies are applicable for flexibility analysis of dynamic systems formulated with either ordinary or partial differential equations. Four (4) case studies are presented in this thesis to demonstrate the accuracy and efficiency achieved with the proposed computation algorithms.

    摘要 I Extended Abstract II 致謝 X 目錄 XI 表目錄 XIII 圖目錄 XIV 第一章 緒論 1 1.1 研究背景 1 1.2 文獻回顧 2 1.3 研究目的 5 1.4 章節組織 5 第二章 以微分方程式為基礎的動態系統彈性分析 6 2.1 動態系統之數學規劃模型 6 2.2 動態彈性指標數值求解方法 10 第三章 以常微分方程為基礎的動態系統 14 3.1 常微分方程動態模式之離散化 14 3.2 實際動態系統操作彈性 15 3.3 頂點法之額外限制-窮舉法 16 3.4 頂點法之額外限制-蒙地卡羅樹搜索法 20 3.5 可變鄰域搜索演算法-使用蒙地卡羅樹搜索法求解結果 32 3.6 動態彈性指標求解通用計算流程 36 第四章 常微分動態系統案例 38 4.1 單水槽緩衝系統 38 4.2 生物反應器─酒精發酵槽系統(Alcoholic fermentation process) 51 第五章 偏微分動態系統案例 74 5.1 偏微分方程動態模式之離散化 74 5.1.1 有限差分法 75 5.1.2 正交配置的有限元素法 76 5.2 偏微分系統之額外限制 80 5.3 一維熱傳動態系統 82 5.4 拋物線槽太陽能集熱器(Parabolic trough collector) 156 第六章 結論與展望 213 6.1 研究結論 213 6.2 未來展望 213 參考文獻 215 附錄A.1:單水槽緩衝系統GAMS碼 220 附錄A.2:單水槽緩衝系統Python碼 221 附錄B.1:一維熱傳動態系統GAMS碼 224 附錄B.2:一維熱傳動態系統Python碼 228 附錄C:蒙地卡羅樹搜索演算法Python碼 233

    Adi, V. S. K., and Chang, C. T., 2013. A Mathematical Programming Formulation for Temporal Flexibility Analysis. Comput. Chem. Eng. 57, 151–158.
    Adi, V. S. K., and Chang, C. T., 2015. Development of Flexible Designs for PVFC Hybrid Power Systems. Renewable Energy 74, 176–186.
    Ali, S. M., Hwang, S. W., Chang, C. T., and Chang, J., S., 2021. An Effective Numerical Procedure for Evaluating Flexibility Indices of Dynamic Systems with Piecewise Constant Manipulated Variables. Comput. Chem. Eng 154.
    Auer, P., Cesa-Bianchi, N., and Fischer, P., 2002. Finite-Time Analysis of the Multiarmed Bandit Problem. Machine Learning 47(2):235–56.
    Brengel, D. D., and Seider, W. D., 1992. Coordinated Design And Control Optimization Of Nonlinear Processes. Vol. 16.
    Careyt, G. F., and Finlayson, B. A., 1975. Orthogonal Collocation On Finite Elements. Vol. M.
    Chang, H. S., Fu, M. C., Hu, J., and Marcus, S. I., 2005. An Adaptive Sampling Algorithm for Solving Markov Decision Processes. Operations Research 53(1), 126–139.
    Chaslot, G. M. J. B., Winands, M. H. M., van den Herik, H. J., Uiterwijk, J. W. H. M., and Bouzy B., 2008. Progressive Strategies for Monte-Carlo Tree Search. New Mathematics and Natural Computation 4(3), 343–357.
    Dimitriadis, V. D., Shah, N., and Pantelides, C. C., 1997. Modeling and Safety Verification of Discrete/Continuous Processing Systems. AIChE Journal 43(4), 1041–1059.
    Dimitriadis, V. D., and Pistikopoulos, E. N., 1995. Flexibility Analysis of Dynamic Systems. Ind. Eng. Chem. Res. 34(12), 4451–4462.
    Fabro, J. A., and Arruda, L. V. R., 2003. Fuzzy-Neuro Predictive Control, Tuned by Genetic Algorithms, Applied to a Fermentation Process. IEEE International Symposium on Intelligent Control 194–199.
    Finlayson, B., 1974. Orthogonal Collocation in Chemical Reaction Engineering. Catalysis Reviews Science and Engineering 10, 69–138.
    Gelly, S., Wang, Y., Munos, R., and Teytaud, O., 2006. Modification of UCT with Patterns in Monte-Carlo Go. Technical report, INRIA.
    Grossmann, I. E., and C. A. Floudas., 1987. Active Constraint Strategy for Flexibility Analysis in Chemical Processes. Comput. Chem. Eng. 11(6), 675–693.
    Hansen, P., Mladenović, N., and Pérez, J. A. M., 2010. Variable Neighbourhood Search: Methods and Applications. Annals of Operations Research 175(1), 367–407.
    Kabbaj, N., Nakkabi, Y., and Doncescu, A., 2010. Analytical and Knowledge Based Approaches for a Bioprocess Supervision. Knowledge-Based Systems 23(2):116–24.
    Kannaiyan, S., Bhartiya, S., and Bhushan, M., 2019. Dynamic Modeling and Simulation of a Hybrid Solar Thermal Power Plant. Ind. Eng. Chem. Res. 58(18), 7531–7550.
    Kocsis, L., and Szepesvári, C., 2006. Bandit Based Monte-Carlo Planning. Machine Learning: ECML 282–93.
    Kuo, Y. C., and Chang, C. T., 2016. On Heuristic Computation and Application of Flexibility Indices for Unsteady Process Design. Ind. Eng. Chem. Res. 55(3), 670–682.
    Lima, F. V., and Georgakis, C., 2008. Design of Output Constraints for Model-Based Non-Square Controllers Using Interval Operability. Journal of Process Control 18(6), 610–20.
    Lima, F. V., Georgakis, C., Smith, J. F., Schnelle, P. D., and Vinson, D. R., 2010. Operability-Based Determination of Feasible Control Constraints for Several High-Dimensional Nonsquare Industrial Processes. AIChE Journal 56(5), 1249–1261.
    Lima, F. V., Jia, Z., Ierapetritou, M., and Georgakis, C., 2010. Similarities and Differences between the Concepts of Operability and Flexibility: The Steady-State Case. AIChE Journal 56(3), 702–716.
    Maher, M., 1995. Modélisation et élaboration d’algorithmes d’estimation et de commande: application á un bioprocédé, Ph.D. thesis, Université Paul Sabatier de Toulouse.
    Malcolm, A., Polan, J., Zhang, L., Ogunnaike, B. A., and Linninger, A. A., 2007. Integrating Systems Design and Control Using Dynamic Flexibility Analysis. AIChE Journal 53(8), 2048–2061.
    Masero, E., Maestre, J. M., and Camacho, E. F., 2022. “Market-Based Clustering of Model Predictive Controllers for Maximizing Collected Energy by Parabolic-Trough Solar Collector Fields.” Applied Energy 306.
    Mendonça, M., Angelico, B., Arruda, L. V. R., and Neves F., 2013. A Dynamic Fuzzy Cognitive Map Applied to Chemical Process Supervision. Engineering Applications of Artificial Intelligence 26(4), 1199–1210.
    Mladenović, N., and Hansen, P., 1997. Variable Neighborhood Search. Computers & Operations Research 24(11), 1097–1100.
    Sanchez-Sanchez, K. B., and Ricardez-Sandoval, L. A., 2013. Simultaneous Design and Control under Uncertainty Using Model Predictive Control. Ind. Eng. Chem. Res. 52(13), 4815–4833.
    Serra, A., Strehaiano, P., and Taillandier, P., 2005. Influence of Temperature and PH on Saccharomyces Bayanus Var. Uvarum Growth; Impact of a Wine Yeast Interspecific Hybridization on These Parameters. International Journal of Food Microbiology 104(3), 257–65.
    Swaney, R. E., and Grossmann, I. E., 1985. An Index for Operational Flexibility in Chemical Process Design. Part I: Formulation and Theory. AIChE Journal 31(4), 621–630.
    Swaney, R. E., and Grossmann, I. E., 1985. An Index for Operational Flexibility in Chemical Process Design. Part II: Computational Algorithms. AIChE Journal 31(4):631–41.
    Vasilache, A., B. Dahhou, G. R., and Goma, G., 2001. Classification of Fermentation Process Models Using Recurrent Neural Networks. International Journal of Systems Science 32(9), 1139–53.
    Wu, R. S., and Chang, C. T., 2017. Development of Mathematical Programs for Evaluating Dynamic and Temporal Flexibility Indices Based on KKT Conditions. Journal of the Taiwan Institute of Chemical Engineers 73, 86–92.
    Zhou, H., Li, X. X., Qian, Y., Chen, Y., and Kraslawski, A., 2009. Optimizing the Initial Conditions To Improve the Dynamic Flexibility of Batch Processes. Ind. Eng. Chem. Res. 48(13), 6321–6326.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE