| 研究生: |
江育賢 Chiang, Yu-Hsien |
|---|---|
| 論文名稱: |
1-溴-4-乙炔苯在銅(100)和氧/銅(100)表面上的熱反應研究 Thermal Chemistry of 1-Bromo-4-Ethynylbenzene on Cu(100) and O/Cu(100) Surfaces |
| 指導教授: |
林榮良
Lin, Jong-Liang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 82 |
| 中文關鍵詞: | 程序控溫反應/脫附 、反射式吸收紅外光譜 、X-光光電子能譜 、近緣X-光吸收細微結構 、1溴-4乙炔苯 |
| 外文關鍵詞: | 1-bromo-4-ethynylbenzene, surface science, thermal chemistry, XPS, NEXAFS. |
| 相關次數: | 點閱:139 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在無氧表面下,TPD/R實驗得知Br(C6H4)C≡CH/Cu(100)的多層分子性脫附在200 K,單層分子性脫附在225 K和370 K。得到的反應產物只有H2,脫附範圍在520 K-860 K。XPS的資訊顯示分子是利用乙炔基吸附在銅單晶上,且C-Br鍵在370 K開始斷裂並吸附在表面上,在520 K完全解離直到升溫至800 K後脫附。RAIRS和NEXAFS幫助我們分析分子吸附在表面上的結構位向。120 K的苯環和表面夾角為60o,升溫至250 K和520 K後夾角在75o和45o。有氧表面的TPD/R研究有CO、CO2、H2O及H2的產物出現。XPS得知升溫至425 K後已有部分C-Br斷裂,630 K時已測不到任何C-Br鍵訊號。
We conducted the experiments for the adsorption and thermal chemistry of 1-bromo-4-ethynylbenzene(C8H5Br) on Cu(100) and O/Cu(100) surface, focusing on reaction pathways, identification of surface intermediate and adsorption structure. A combination of several complementary surface-analysis techniques such as temperature-programmed desorption/reaction (TPD/R), X-ray photoelectron spectroscopy(XPS), reflected absorption infrared spectroscopy(RAIRS) and near edge x-ray absorption fine structure(NEXAFS) were employed, attempting to fully address the research focal points. In the TPD/R experiments of Cu(100) and O/Cu(100), 1-bromo-4-ethynylbenzene is subjected to decomposition to evolve hydrogen(H2) in the temperature range of 520 K-860 K and 630 K-860 K, respectively. In the range of 120 K to 980 K investigated, H2 is the sole gaseous product detected on Cu(100), indicating that all of the carbon atoms are left on the surface. However, additional product of H2O, CO and CO2 were detected on oxygen-precovered Cu(100). It was of crucial importance using XPS to study intermediate and their chemical structures. The XPS result shows that the C-Br bond of 1-bromo-4-ethynylbenzene cleavages at 370 K and 350 K, on Cu(100) and O/Cu(100), respectively. The surface bromine atoms from 1-bromo-4-ethynylbenzene decomposition stay on the surface until 650 K and 770 K on both surface. 1-bromo-4-ethynylbenzene is adsorbed on the surface, forming two σ-bonds with copper atoms as reported for alkynes molecules on transition metals. RAIRS also confirmed this result, since no characteristic are detected. At last, NEXAFS reveals the orientation of the aromatic rings of 1-bromo-4-ethynylbenzene and of C8H5 fragment.
[1] J. C Vickerman Surface Analysis the Principal Techniques Wiley& Sons, New York, 1997.
[2] S. J. Gregg, K. S. Sing, Adsorption, Surface Area and porosity, Academic Press, New York, 1967.
[3] M. Xi, B. E. Bent, Surf. Sci. 1992, 287, 19.
[4] D. Syomin, B. E. Koel, Surf. Sci. 2001, 490, 265.
[5] A. F. Lee; Z. Chang; S. F. J. Hackett, A. D. Newman; K. Wilson, J. Phys. Chem. C 2007, 111, 10455.
[6] V. K. Kanuru, G. Kyriakou, S. K. Beaumont, A. C. Papageorgiou, D. J. Watson, R. M. Lambert, J. Am. Chem. Soc. 2010, 132, 8081.
[7] M. Xi, M. X. Yang, S. K. Jo, B. E. Bent, J. Chem. Phys. 1994, 101, 15
[8] S. C. Petitto, E. M. Marsh, M. A. Langell, J. Phys. Chem. B 2006, 110, 1309.
[9] G. Iucci, V. Carravetta, P. Altamura, M. V. Russo, G. Paolucci, A. Goldoni, G. Polzonetti Chem. Phys. 2004, 30, 43.
[10] G. Iucci, V. Carravetta, G. Paolucci, A. Goldoni, M. V. Russo, G. Polzonetti, Chem. Phys. 2005, 310, 43.
[11] N. Annu. Sheppard, Rev. Phys. Chem. 1988, 39, 589.
[12] C. J. Baddeley, M. Tikhov, C. Hardacre, J. R. Lomas, R. M. Lambert, J. Phys. Chem. 1996, 100, 2189.
[13] C. J. Baddeley, R. M. Ormerod, A. W. Stephenson, R. M. Lambert, J. Phys. Chem. 1995, 99, 5146.
[14] A. F. Lee, C. J. Baddeley, C. Hardacre, G. D. Mooggridge, R. M. Ormerod, R. M. Lambert, J. P. Candy, J. -M. Basset, J. Phys. Chem. B 1997, 101, 2797.
[15] C. Xu, J. W. Peck, B. Koel, J. Am. Chem. Soc. 1993, 115, 751.
[16] J. Dvorak, J. Hrbek, J. Phys. Chem. B 1998, 102, 9443.
[17] G. Kyriakou, J. Kim, M. S. Tikhov, N. Macleod, R. M. Lambert, J. Phys. Chem. B 2005, 109, 10952.
[18] 葉家豪碩士論文, 國立成功大學化學所, 2012.
[19] J. A. W. Elliott, C. A. Ward, J. Chem. Phys. 1997, 106, 5677.
[20] P. A. Redhead Vacuum, 1962, 12, 203.
[21] G. Hähner, Chem. Soc. Rev. 2006, 35, 1244.
[22] J. Stöhr, D. A. Outka, Phys. Rev. B 1987, 36, 15.
[23] B. A. Sexton, Surf. Sci. 1979, 88, 298.
[24] Y. Sohn, W. Wei, and J. M. White, J. Phys. Chem. C 2007, 111, 5101.
[25] D. Syomin, B. E. Koel, Surf. Sci. 2001, 490, 265.
[26] I. Chorkendorff, P. B. Rasmussen, Surf.Sci., 1991, 248, 35.
[27] C.Y. Nakakura, E.I. Altman, Surf. Sci. 1996, 370, 32.
[28] B. A. Sexton; A. E. Hughes, Surf. Sci. 1984, 140, 227.
[29] R. Brosseau, M. R. Brustein, T. H. Ellis Surf. Sci. 1993, 294, 243.
[30] T. Sueyoshi, T. Sasaki, Y. Iwasawa, J. Phys. Chem. B 1997, 101, 4648.
[31] Y. Sohn, W. Wei, J. M. White, J. Phys. Chem. C 2008, 112, 18531.
[32] Y. Sohn, W. Wei, J. M. White, Langmuir 2007, 23, 12185.
[33] T. H. Ellis, J. Kruus, H. Wang, J. Vac. Sci. Technol. A 1993, 11, 2117.
[34] D. Kolovos-Vellianitis, T. Kammler, J. Küppers, Surf. Sci. 2001, 166, 482.
[35] P. B. Rasmueen, P. A. Taylor, I. Chorkendorff, Surf. Sci. 1992, 270, 352.
[36] J. –L. Lin, Y. –S. Lin, J. –J. Shin, K. –H. Kuo, S. –K. Lin, T. –S. Wu, M. –Y. Shiu, J. Chem. Phys. 2011, 135, 064706.
[37] H. Öström, D. Nordlund, H. Ogasawara, K. Weiss , L. Triguero, L. G. M. Pettersson, A. Nilsson, Surf. Sci. 2004, 565, 206.
[38] X. J. Zhou, K. T. Leung, Surf. Sci. 2006, 600, 3285.
[39] D. H. Whiffen, J. Chem. Soc. 1955, 273, 1350.
[40] I. A. Garbuzova, V. T. Aleksanyan, I. R. Gol'ding, A. M. Sladkov, B. Acad. Sci. USSR CH+, 1974, 23, 1937.
[41] M. X. Yang, M. Xi, H. Yuan, B. E. Bent, P. Stevens, J. M. White, Surf. Sci. 1995, 341, 9.
[42] D. Arvanitis, U. Döbler, L. Wenzel, K. Baberschke, Surf. Sci. 1986, 178, 686.