簡易檢索 / 詳目顯示

研究生: 江育賢
Chiang, Yu-Hsien
論文名稱: 1-溴-4-乙炔苯在銅(100)和氧/銅(100)表面上的熱反應研究
Thermal Chemistry of 1-Bromo-4-Ethynylbenzene on Cu(100) and O/Cu(100) Surfaces
指導教授: 林榮良
Lin, Jong-Liang
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 82
中文關鍵詞: 程序控溫反應/脫附反射式吸收紅外光譜X-光光電子能譜近緣X-光吸收細微結構1溴-4乙炔苯
外文關鍵詞: 1-bromo-4-ethynylbenzene, surface science, thermal chemistry, XPS, NEXAFS.
相關次數: 點閱:139下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在無氧表面下,TPD/R實驗得知Br(C6H4)C≡CH/Cu(100)的多層分子性脫附在200 K,單層分子性脫附在225 K和370 K。得到的反應產物只有H2,脫附範圍在520 K-860 K。XPS的資訊顯示分子是利用乙炔基吸附在銅單晶上,且C-Br鍵在370 K開始斷裂並吸附在表面上,在520 K完全解離直到升溫至800 K後脫附。RAIRS和NEXAFS幫助我們分析分子吸附在表面上的結構位向。120 K的苯環和表面夾角為60o,升溫至250 K和520 K後夾角在75o和45o。有氧表面的TPD/R研究有CO、CO2、H2O及H2的產物出現。XPS得知升溫至425 K後已有部分C-Br斷裂,630 K時已測不到任何C-Br鍵訊號。

    We conducted the experiments for the adsorption and thermal chemistry of 1-bromo-4-ethynylbenzene(C8H5Br) on Cu(100) and O/Cu(100) surface, focusing on reaction pathways, identification of surface intermediate and adsorption structure. A combination of several complementary surface-analysis techniques such as temperature-programmed desorption/reaction (TPD/R), X-ray photoelectron spectroscopy(XPS), reflected absorption infrared spectroscopy(RAIRS) and near edge x-ray absorption fine structure(NEXAFS) were employed, attempting to fully address the research focal points. In the TPD/R experiments of Cu(100) and O/Cu(100), 1-bromo-4-ethynylbenzene is subjected to decomposition to evolve hydrogen(H2) in the temperature range of 520 K-860 K and 630 K-860 K, respectively. In the range of 120 K to 980 K investigated, H2 is the sole gaseous product detected on Cu(100), indicating that all of the carbon atoms are left on the surface. However, additional product of H2O, CO and CO2 were detected on oxygen-precovered Cu(100). It was of crucial importance using XPS to study intermediate and their chemical structures. The XPS result shows that the C-Br bond of 1-bromo-4-ethynylbenzene cleavages at 370 K and 350 K, on Cu(100) and O/Cu(100), respectively. The surface bromine atoms from 1-bromo-4-ethynylbenzene decomposition stay on the surface until 650 K and 770 K on both surface. 1-bromo-4-ethynylbenzene is adsorbed on the surface, forming two σ-bonds with copper atoms as reported for alkynes molecules on transition metals. RAIRS also confirmed this result, since no characteristic are detected. At last, NEXAFS reveals the orientation of the aromatic rings of 1-bromo-4-ethynylbenzene and of C8H5 fragment.

    第一章 緒論 1 1.1表面化學之發展 1 1.2表面的定義以及Cu(100)表面介紹 2 1.3 真空的定義與應用 3 1.4表面吸附 4 1.5研究動機和文獻回顧 5 第二章 表面研究儀器與分析技術 11 2.1 程式控溫脫附/反應(Temperature-Programmed Desorption/ Reaction, TPD/R) 11 2.2 反射式吸收紅外光譜(Reflection-Absorption Infrared Spectroscopy, RAIRS) 13 2.3 X光光電子能譜(X-ray photoelectron spectroscopy, XPS) 16 2.4 近緣x-光吸收細微結構(Near Edge X-ray Absorption Fine Structue, NEXAFS) 22 第三章 實驗系統與方法 29 3.1超高真空系統 29 3.2單晶的前處理 32 3.3有氧表面的製備方法 32 3.4樣品的前處理方式 33 第四章結果與討論 34 4.1 C8H5Br在Cu(100)表面上的程溫脫附反應研究 34 4.1.1 C8H5Br在Cu(100)表面上的TPD/R研究 34 4.1.2 C8H5Br在O/Cu(100)表面上的TPD/R研究 42 4.2 X-Ray 光電子能譜的分析 51 4.2.1 C8H5Br在Cu(100)表面上的XPS研究 51 4.2.2 C8H5Br在O/Cu(100)表面上的XPS研究 58 4.3 1-bromo-4-ethynylbenzene在Cu(100)表面上的反射式吸收紅外光譜(RAIRS)的研究 60 4.3.1 1-bromo-4-ethynylbenzene在O/Cu(100)表面上的反射式吸收紅外光譜(RAIRS)的研究 65 4.4 1-bromo-4-ethynylbenzene在Cu(100)表面上的近緣X-光吸收細微結構(NEXAFS)研究 68 第五章 結論 78 參考文獻 79

    [1] J. C Vickerman Surface Analysis the Principal Techniques Wiley& Sons, New York, 1997.
    [2] S. J. Gregg, K. S. Sing, Adsorption, Surface Area and porosity, Academic Press, New York, 1967.
    [3] M. Xi, B. E. Bent, Surf. Sci. 1992, 287, 19.
    [4] D. Syomin, B. E. Koel, Surf. Sci. 2001, 490, 265.
    [5] A. F. Lee; Z. Chang; S. F. J. Hackett, A. D. Newman; K. Wilson, J. Phys. Chem. C 2007, 111, 10455.
    [6] V. K. Kanuru, G. Kyriakou, S. K. Beaumont, A. C. Papageorgiou, D. J. Watson, R. M. Lambert, J. Am. Chem. Soc. 2010, 132, 8081.
    [7] M. Xi, M. X. Yang, S. K. Jo, B. E. Bent, J. Chem. Phys. 1994, 101, 15
    [8] S. C. Petitto, E. M. Marsh, M. A. Langell, J. Phys. Chem. B 2006, 110, 1309.
    [9] G. Iucci, V. Carravetta, P. Altamura, M. V. Russo, G. Paolucci, A. Goldoni, G. Polzonetti Chem. Phys. 2004, 30, 43.
    [10] G. Iucci, V. Carravetta, G. Paolucci, A. Goldoni, M. V. Russo, G. Polzonetti, Chem. Phys. 2005, 310, 43.
    [11] N. Annu. Sheppard, Rev. Phys. Chem. 1988, 39, 589.
    [12] C. J. Baddeley, M. Tikhov, C. Hardacre, J. R. Lomas, R. M. Lambert, J. Phys. Chem. 1996, 100, 2189.
    [13] C. J. Baddeley, R. M. Ormerod, A. W. Stephenson, R. M. Lambert, J. Phys. Chem. 1995, 99, 5146.
    [14] A. F. Lee, C. J. Baddeley, C. Hardacre, G. D. Mooggridge, R. M. Ormerod, R. M. Lambert, J. P. Candy, J. -M. Basset, J. Phys. Chem. B 1997, 101, 2797.
    [15] C. Xu, J. W. Peck, B. Koel, J. Am. Chem. Soc. 1993, 115, 751.
    [16] J. Dvorak, J. Hrbek, J. Phys. Chem. B 1998, 102, 9443.
    [17] G. Kyriakou, J. Kim, M. S. Tikhov, N. Macleod, R. M. Lambert, J. Phys. Chem. B 2005, 109, 10952.
    [18] 葉家豪碩士論文, 國立成功大學化學所, 2012.
    [19] J. A. W. Elliott, C. A. Ward, J. Chem. Phys. 1997, 106, 5677.
    [20] P. A. Redhead Vacuum, 1962, 12, 203.
    [21] G. Hähner, Chem. Soc. Rev. 2006, 35, 1244.
    [22] J. Stöhr, D. A. Outka, Phys. Rev. B 1987, 36, 15.
    [23] B. A. Sexton, Surf. Sci. 1979, 88, 298.
    [24] Y. Sohn, W. Wei, and J. M. White, J. Phys. Chem. C 2007, 111, 5101.
    [25] D. Syomin, B. E. Koel, Surf. Sci. 2001, 490, 265.
    [26] I. Chorkendorff, P. B. Rasmussen, Surf.Sci., 1991, 248, 35.
    [27] C.Y. Nakakura, E.I. Altman, Surf. Sci. 1996, 370, 32.
    [28] B. A. Sexton; A. E. Hughes, Surf. Sci. 1984, 140, 227.
    [29] R. Brosseau, M. R. Brustein, T. H. Ellis Surf. Sci. 1993, 294, 243.
    [30] T. Sueyoshi, T. Sasaki, Y. Iwasawa, J. Phys. Chem. B 1997, 101, 4648.
    [31] Y. Sohn, W. Wei, J. M. White, J. Phys. Chem. C 2008, 112, 18531.
    [32] Y. Sohn, W. Wei, J. M. White, Langmuir 2007, 23, 12185.
    [33] T. H. Ellis, J. Kruus, H. Wang, J. Vac. Sci. Technol. A 1993, 11, 2117.
    [34] D. Kolovos-Vellianitis, T. Kammler, J. Küppers, Surf. Sci. 2001, 166, 482.
    [35] P. B. Rasmueen, P. A. Taylor, I. Chorkendorff, Surf. Sci. 1992, 270, 352.
    [36] J. –L. Lin, Y. –S. Lin, J. –J. Shin, K. –H. Kuo, S. –K. Lin, T. –S. Wu, M. –Y. Shiu, J. Chem. Phys. 2011, 135, 064706.
    [37] H. Öström, D. Nordlund, H. Ogasawara, K. Weiss , L. Triguero, L. G. M. Pettersson, A. Nilsson, Surf. Sci. 2004, 565, 206.
    [38] X. J. Zhou, K. T. Leung, Surf. Sci. 2006, 600, 3285.
    [39] D. H. Whiffen, J. Chem. Soc. 1955, 273, 1350.
    [40] I. A. Garbuzova, V. T. Aleksanyan, I. R. Gol'ding, A. M. Sladkov, B. Acad. Sci. USSR CH+, 1974, 23, 1937.
    [41] M. X. Yang, M. Xi, H. Yuan, B. E. Bent, P. Stevens, J. M. White, Surf. Sci. 1995, 341, 9.
    [42] D. Arvanitis, U. Döbler, L. Wenzel, K. Baberschke, Surf. Sci. 1986, 178, 686.

    下載圖示 校內:2020-07-31公開
    校外:2020-07-31公開
    QR CODE