簡易檢索 / 詳目顯示

研究生: 陳文成
Wen-Cheng, Chen
論文名稱: 高階自行車製造之管件加工製程精實改善之探討
A Study on the Lean Kaizen for High-end Bicycle Tube Components Manufacturing
指導教授: 楊大和
Yang, Ta-ho
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 製造資訊與系統研究所
Institute of Manufacturing Information and Systems
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 105
中文關鍵詞: 精實改善價值流圖離散事件模擬田口方法多屬性決策
外文關鍵詞: Discrete Events Simulation, Lean Kaizen, Multiple Attribute Decision Making Method, Taguchi Method, Value Steaming Mapping
相關次數: 點閱:137下載:13
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討之案例公司為一家高階自行車製造商,屬於委託代工(OEM,Original Equipment Manufacturing),主要生產外國競賽、極限運動用之高階自行車,是屬於多樣少量的生產模式,而因為原物料採購期冗長,且基於騎乘安全之考量,產品要求精密程度極高,使得生產過程複雜且變化程度高,這是導致案例公司交貨期長達半年之久的原因所在。因此本研究將透過精實管理概念的導入藉以改善生產流程,試圖找出適合案例公司實務可行之精實方法,期望能在不影響產出為前提,進一步降低在製品庫存及降低生產前置時間,並提供管理者進行改善時有足夠之參考依據。
    首先以價值流圖繪製,找出現況之改善契機,透過合適之精實概念的導入作為控制因子,利用直交表產生數個方案,進一步以模擬為工具產生各個方案之績效值,並以田口結合TOPSIS法求取最佳因子水準組合,接著以敏感度分析以及單反應實驗來驗證所求得之最佳因子水準組合是否為整體最佳。
    本研究將實際在案例公司參與改善之結果與現況進行比較,在不影響產出的情況下,能有效降低24.7%的在製品庫存,生產前置時間則改善16.2%。而根據實驗分析之結果,本研究求得之最佳因子水準組合,預期能夠進一步對於系統之績效有所提升,相比較於改善後,在產出有2.2%的提升,系統總在製品數、生產前置時間,分別有38.2%及37.1%的改善幅度,因此能夠證實該最佳水準組合能夠符合案例公司之改善目標,在保持產出不下降的情況下能有效降低在製品數、縮短前置時間之訴求。

    In this study, a High-end bicycle manufacturer presented here to be example, in this case, the case company have long purchasing time of materials, in addition to this, riding safety is the most important things of High-end bicycle, therefore the product quality and precision problem will become the top issue of case company. It is the reason why that case company’s production process so complex and delivery time up to six month. Based on these reason, we used some method to find out the solution, in the first place we used Value Stream Mapping to found out the non-value-added activity and defined potential problem in the production system. Such as work-in-process inventory, overproduction, long production lead time and delivery time. After that, we proposed lean management principles to find appropriate lean concepts to be control factor and put into the Orthogonal Arrays to generate multiple scenarios. In order to discuss which one will gives the best improvement of production process, so, we used discrete-event simulation to generate value of quality characteristic performance, and we also used Taguchi method combine Technique for Order Preference by Similarity to Ideal Solution ( TOPSIS ) in Multiple Attribute Decision-Making methods ( MADM ) to measure the value of multiple quality characteristic performance to find out the best scenario of this case.
    In the end of experiments, we through the sensitivity analysis to discuss whether the difference weights can cause difference result, and we also used Taguchi method to analyze single responses optimization to prove the optimized scenario is overall the best. Finally, we compare the optimal value of each quality characteristic of optimized scenario with original value.

    目錄 vi 表目錄 viii 圖目錄 x 1. 緒論 1 1.1 研究背景與動機 1 1.2 研究目的 5 1.3 研究流程 6 1.4 研究架構 7 2. 文獻探討 8 2.1 精實生產系統 8 2.2 價值流圖 12 2.3 能力構築競爭 14 2.4 田口方法 18 2.5 多屬性決策法 18 3. 案例說明及價值流圖分析 22 3.1 案例公司簡介 23 3.2 價值流圖分析 29 4. 方法與分析 40 4.1 導入精實原則 41 4.2 應用田口方法設計實驗方案 59 4.3 離散事件模擬 62 4.4 建構模擬模式 65 4.5 發展未來理想狀態之模擬模式 74 4.6 田口方法結合理想解類似度順序偏好法 81 4.7 實驗分析 85 4.8 單反應實驗 93 5. 結論與建議 101 5.1結論與建議 101 5.2未來研究方向 102 參考文獻 103

    財團法人自行車暨健康科技工業研究發展中心,2015,自行車產業概況,產業學院。
    陳永章, et al.,2008,結合田口方法與TOPSIS於多重品質特性參數最佳化之研究,品質月刊,第四十四卷,第十一期,頁1-6。
    簡禎富,2014,決策分析與管理 : 紫式決策分析以全面提升決策品質,二版,雙葉書廊,台北市。
    大野耐一,1978,トヨタ生産方式: 脫規模の経営をめざして,ダイヤモンド社,東京。
    王維齡,2010,台灣自行車產業經營模式分析,南華大學國際暨大陸事務學系亞太研究所,碩士論文。
    李昆忠,2005,管理知識中心,Available: http://mymkc.com/articles/contents.aspx?ArticleID=21675 (取得日期 : 2016.05.14)
    李輝煌,2013,田口方法 : 品質設計的原理與實務,四版修訂,高立圖書有限公司,新北市。
    俞慧芸,2004,台灣自行車產業轉型的歷史考察(1970-1990),台灣社會學會年會。
    楊大和,民96,精實系統之價值流圖製作與應用,國立成功大學製造工程研究所教材。
    鄧振源,2012,多準則決策分析方法與應用,鼎茂圖書,台北市。
    麥克.魯斯、約翰.舒克,趙克強譯,2006,學習觀察 : 增加價值、消除浪費的
    價值流圖,財團法人中衛發展中心,台北。
    藤本隆宏,許經明、李兆華譯,2005,能力構築競爭,中衛發展中心,台北市。
    Abdulmalek, F. A., and Rajgopal, J., 2007, Analyzing the benefits of lean manufacturing and value stream mapping via simulation: A process sector case study, International Journal of Production Economics, 107 (1), 223-236.
    Banks, J., et al., 2005, Discrete-Event System Simulation, 4th edition, Peason Prentice Hall, New Jersey.
    Charnes, A., et al., 1978, Measuring the efficiency of decision making units, European Journal of Operational Research, 2 (6), 429-44.
    Chen, J. C., et al., 2010, From value stream mapping toward a lean/sigma continuous improvement process: an industrial case study, International Journal of Production Research, 48 (4), 1069-1086.
    Fujimoto, T., 2007, Architecture-based comparative advantage—a design information view of manufacturing, Evolutionary and Institutional Economics Review, 4 (1), 55-112.
    Hopp, W.J., and Spearman, M.L., 2008, Factory physics, 3rd edition, Waveland Press, United States.
    Hwang, C.-L., and Yoon, K., 1981, Multiple Attribute Decision Making, Springer New York.
    Kelton, W.D., et al., 2014, Simulation with Arena, 6th edition, McGraw Hill, New York.
    Kim, G., et al., 1997, Identifying investment opportunities for advanced manufacturing systems with comparative-integrated performance measurement, International Journal of Production Economics, 50 (1), 23-33.
    Liker, J.K., 2004, The Toyota Way: 14 Management Principles from the World’s Greatest Manufacturer, McGraw-Hill, New York.
    Lacerda, A. P., et al., 2015, Applying value stream mapping to eliminate waste: a case study of an original equipment manufacturer for the automotive industry, International Journal of Production Research, 54 (6), 1708-1720.
    Lu, J. C., et al., 2011, A lean pull system design analysed by value stream mapping and multiple criteria decision-making method under demand uncertainty, International Journal of Computer Integrated Manufacturing, 24 (3), 211-228.
    Monden, Y., 1983, Toyota Production System: Practical Approach to Production Management, Engineering & Management Press.
    Ohno, T., 1988, Toyota Production System : Beyond Large-Scale Production, Productivity Press, Portland.
    Rother, M., and Shook., J., 1998, Learning to See: Value Stream Mapping to Add Value and Eliminate Muda., Cambridge, Lean Enterprise Institute, Massachusetts,
    Saaty, T.L., 1988, What is the Analytic Hierarchy Process?, Springer Berlin Heidelberg.
    Seth, D., and Gupta, V., 2005, Application of value stream mapping for lean operations and cycle time reduction: an Indian case study, Production Planning & Control, 16 (1), 44-59.
    Tong, L., et al., 2004, Dynamic multiple responses by ideal solution analysis, European Journal of Operational Research, 156 (2), 433-44.
    Tong L.I., and Su, C.T., 1997, Multi-response robust design by principal component analysis, Total Quality Management, 8 (6), 409-416.
    Tong, L.I., and Su, C.T., 1997, Optimizing multi-response problems in the Taguchi method by fuzzy multiple attribute decision making, Quality and Reliability Engineering International, 13 (1), 25-34.
    Womack, J.P., and Jones, D.T., 2004, Lean Thinking: Banish Waste and Create Wealth in Your Corporation, Simon and Schuster, New York.
    Yang, T., et al., 2007, Multiple attribute decision-making methods for the dynamic operator allocation problem, Mathematics and Computers in Simulation, 73 (5), 285-99.
    Yang, T., and Chou, P., 2005, Solving a multiresponse simulation-optimization problem with discrete variables using a multiple-attribute decision-making method, Mathematics and Computers in Simulation, 68 (1), 9-21.
    Yang, T., Kuo, Y., and Chang, I., 2004, Tabu-search simulation optimization approach for flow-shop scheduling with multiple processors-a case study, International Journal of Production Research 42 (19), 4015-4030.
    Yang, T., and Lu, J.C., 2011, The use of a multiple attribute decision-making method and value stream mapping in solving the pacemaker location problem, International Journal of Production Research, 49 (10),2793-2817.
    Yang, T., et al., 2015, Lean production system design for fishing net manufacturing using lean principles and simulation optimization, Journal of Manufacturing Systems, 34 (1), 66-73.
    Yang, T., et al., 2011, Lean-pull strategy in a re-entrant manufacturing environment: a pilot study for TFT-LCD array manufacturing, International Journal of Production Research, 49 (6), 1511-1529.
    Yang, T., and Hung, C. C.,2007, Multiple-attribute decision making methods for plant layout design problem, Robotics and Computer-Integrated Manufacturing, 23 (1), 126-137.

    下載圖示 校內:2017-08-01公開
    校外:2017-08-01公開
    QR CODE