簡易檢索 / 詳目顯示

研究生: 劉厚伯
Liu, Hou-Bo
論文名稱: 垃圾焚化飛灰產製鈣矽水合材料及氯鹽穩定化之探討
Using municipal solid waste incinerator fly ashes in the production of calcium silicate hydrate materials and the examination of chloride stabilization
指導教授: 張祖恩
Chang, Juu-En
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 158
中文關鍵詞: 焚化飛灰鈣矽水合材料層狀雙金屬氫氧化物穩定化
外文關鍵詞: incineration fly ashes, calcium silicate hydrate materials, chloride stabilization
相關次數: 點閱:104下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 飛灰與底渣是都市垃圾焚化(municipal solid waste incinerators,MSWI)後之固體產物,其去化或資源化是當前環保重點課題。飛灰富含鈣和矽等元素,可用於生產鈣矽水合材料,但因亦含有大量的氯鹽和硫酸鹽,會對鋼筋混凝土產品造成鋼筋腐蝕和混凝土耐久性之問題,影響其資源化與再利用之途徑,目前多經固化/穩定化後送往掩埋場處置。文獻指出弗氏鹽為自然界中少數穩定的含氯礦物,若能釐清弗氏鹽生成及其對氯鹽、硫酸鹽之穩定化作用,並應用焚化飛灰於產製鈣矽水合材料,不僅能促進飛灰等之資源循環利用,更可紓緩掩埋場趨近飽和問題。本研究以焚化飛灰中的反應灰(R-FA)與鍋爐灰(B-FA)為對象(1)首先以試藥級SiO2和Ca(OH)2搭配水泥探討鈣矽水合材料生產的條件,(2)添加MSWI飛灰於生產鈣矽水合材料中,探討MSWI飛灰作為鈣矽水合材料的潛力,(3)添加鋁酸鈉探討生產鈣矽水合材料過程中形成弗氏鹽及其對鈣矽水合材料中重金屬、氯鹽和硫酸鹽的穩定化效果。
    研究結果顯示,R-FA含有高達38%氯鹽,不利於鈣矽水合材料生成,但其中富含鈣、矽和鋁等元素應可作為鈣矽水合材料之替代原料,B-FA中氯鹽含量較低並含有未反應鋁金屬可作為鈣矽水合材料發泡劑使用,用以取代市售的鋁粉。由Ca(OH)2、SiO2與水泥製作漿體經高壓蒸氣養護得知托伯莫萊土(tobermorite)的生成為漿體抗壓強度的關鍵,在Ca(OH)2 45 wt.% + SiO2 45 wt.% + cement 10 wt.% 的配比中有最佳抗壓強度約為36.90 MPa(Ca/Si = 0.748)。
    鈣矽水合材料中飛灰添加量增加會降低漿體抗壓強度,而若調整Ca/Si為最佳0.748時則其影響會降低。添加40 wt.% R-FA後抗壓強度由36.9 MPa降至12.00 MPa,控制上述漿體中Ca/Si為0.748時,添加R-FA後漿體抗壓強度由12.00 MPa提升至21.83 MPa,可符合綠建材中普通磚規範。B-FA中含鋁金屬在鹼性環境會產生氫氣,不同B-FA添加量可產製不同密度與抗壓強度之輕質氣泡混凝土;添加10 wt.% B-FA後密度由原本1.38 g/cm3 降低至1.18 g/cm3,抗壓強度為14.75 MPa符合CNS 13480 高壓蒸氣養護輕質氣泡混凝土磚中G10的規範,添加50 wt.% B-FA後密度降至0.81 g/cm3,抗壓強度為4.80 MPa 符合ASTM C1693-09中規範AAC-4的抗壓強度與密度。
    添加鋁酸鈉可穩定鈣矽水合漿體中源自於焚化飛灰之鹽類與重金屬,並有利於提升漿體抗壓強度。添加不同比例鋁酸鈉後之漿體在蒸養前已有弗氏鹽的生成,加入2.5 wt.% 鋁酸鈉可減少28.5%的氯鹽溶出,添加10 wt.%鋁酸鈉後氯鹽溶出量約減少49.5%,顯示添加鋁酸鈉生成弗氏鹽確實具有穩定氯鹽之功效,而在蒸壓後弗氏鹽轉換成含氯的礦物marialite與生成tobermorite,其氯鹽釋出量由71.6% 降低至25.7%有顯著的穩定效果,且在蒸養後漿體抗壓強度由21.83 MPa提升至26.80 MPa對於試體強度發展有正向的幫助,重金屬溶出也有顯著的減少並符合相關溶出標準。
    綜合而言,本研究以焚化飛灰產製鈣矽水合材料過程中,添加鋁酸鈉可成功穩定氯鹽、硫酸鹽與重金屬並製作成綠色工程材料,其所含鈣矽成分取代率可達40 wt.%,屬於無廢水、低耗能之綠色製程,具有工程應用價值及優良環境效益。

    The fly ash produced by the municipal solid waste incinerator (MSWI) contains a large amount of common cement elements, such as calcium and silicone, so it can be used to produce hydrated calcium silicate materials, replacing calcium and silicon sources in the production process. However, due to the large amount of chlorides and sulfates, it may cause corrosion and durability problems to cement products, and as a result, the recycling route is limited. In order to reduce the problem, stabilizing chloride and sulfate is essential. Studies have shown that Friedel's salt is one of the few stable chlorinated minerals in nature (Forano, 2004), and the production of Friedel's slats by modified fly ash can reduce corrosion problems. If the interaction mechanism between Friedel salt in the calcium silicate hydrated material and chloride and sulfate can be clarified, it can promote the application of the technology of using incinerator fly ash to produce calcium silicate hydrate materials, and further relieve the urge of graduate saturating landfills nowadays.
    This research has three objectives: (1) Find out the appropriate ratio of SiO2, Ca(OH)2 and cement to produce hydrated calcium silicate material; (2) Use municipal waste incineration fly ash to produce hydrated calcium silicate material and explore the potential of MSWI fly ash as a hydrated calcium silicate material; (3) Find out the stability of heavy metals, chlorides and sulfates in the calcium silicate hydrate material produced by MSWI fly ash, and add sodium chlorate to form Friedel's salt and explore its stabilizing effect on chloride salts.

    摘要 I 目 錄 XIII 表目錄 XVI 圖目錄 XVIII 第一章前言 1 1-1 研究動機與目的 1 1-2 研究內容 3 第二章 文獻回顧 5 2-1 垃圾焚化飛灰產出與現況 5 2-1-1 焚化飛灰種類與特性 8 2-1-2 飛灰處理技術 12 2-1-3 焚化飛灰處理現況 16 2-1-4 小結 16 2-2 焚化飛灰對於環境影響 17 2-2-1 氯鹽 17 2-2-2 重金屬 26 2-3 矽酸鈣的水合反應 29 2-3-1 卜作嵐反應 30 2-3-2 鈣矽水熱合成反應條件與特性 32 2-3-3 鈣矽水熱合成的資源化應用 37 2-4 層狀雙氫氧化物對氯鹽與重金屬之作用 39 2-4-1 層狀雙氫氧化物的生成條件與特性 39 2-4-2 層狀雙氫氧化物對飛灰中氯鹽之穩定作用 42 2-4-3 層狀雙氫氧化物對飛灰中重金屬之穩定作用 45 2-5 小結 48 第三章 研究材料、設備與方法 49 3-1 研究架構與實驗流程 49 3-2 研究材料與設備 51 3-2-1 實驗儀器設備與實驗試劑 51 3-3 研究分析與方法 54 3-3-1 添加比例設計與鈣矽調質最適配比設計 54 3-3-2 漿體製備與高壓蒸氣養護程序 55 3-3-3 實驗分析方法 55 3-4 研究成效判斷與基準 60 3-4-1 氯鹽穩定化 60 3-4-2 重金屬穩定化 60 3-4-3 綠色建材規範 63 第四章 結果與討論 65 4-1 飛灰基本特性 65 4-1-1 飛灰物理化學特性 65 4-1-2 氯鹽與重金屬之溶出特性 75 4-1-3 小結 78 4-2 鈣矽水合材料的合成之最適成分配比探討 79 4-2-1 成分配比對鈣矽水合材料的影響 79 4-2-2 成分配比對鈣矽水合材料生成物之影響 83 4-2-3 小結 97 4-3 飛灰應用於鈣矽水合材料的生成影響探討 98 4-3-1 添加反應灰對鈣矽水合材料的影響 98 4-3-2 添加鍋爐灰對鈣矽水合材料的影響 104 4-3-3 焚化飛灰應用於鈣矽水合材料之鹽類溶出特性 110 4-3-4 添加鋁酸鈉對飛灰穩定化的影響 113 4-3-5 小結 127 4-4 焚化飛灰應用於鈣矽水合材料之環境效益與技術評估 129 4-4-1 批次溶出特性 130 4-4-2 長期溶出特性 135 4-4-3 焚化飛灰處理與資源化技術比較 139 4-4-4 小結 143 第五章 結論與建議 144 5-1 結論 144 5-2 建議 146 參考文獻 148

    Atwood, J. L., Comprehensive Supramolecular Chemistry II. Pergamon: evier, 2017.
    Auerbach, S. M., Carrado, K. A., & Dutta, P. K., Handbook of layered materials, CRC press, New York 2004.
    Becchio, C., Corgnati, S. P., Kindinis, A., & Pagliolico, S., Improving environmental sustainability of concrete products: Investigation on MWC thermal and mechanical properties. Energy and Buildings, 41(11), 1127–1134, 2009.
    Belevi, H., & Moench, H., Factors determining the element behavior in municipal solid waste incinerators. 1. Field studies. Environmental Science and Technology, 34(12), 2501–2506, 2000.
    Bie, R., Chen, P., Song, X., & Ji, X., Characteristics of municipal solid waste incineration fly ash with cement solidification treatment. Journal of the Energy Institute, 89(4), 704–712, 2016.
    Bonaccorsi, E., Merlino, S., & Kampf, A. R., The crystal structure of tobermorite 14 Å(plombierite), a C-S-H phase. Journal of the American Ceramic Society, 88(3), 505–512, 2005.
    Brebu, M., Bhaskar, T., Murai, K., Muto, A., Sakata, Y., & Uddin, M. A., Removal of nitrogen, bromine, and chlorine from PP/PE/PS/PVC/ABS–Br pyrolysis liquid products using Fe-and Ca-based catalysts. Polymer Degradation and Stability, 87(2), 225–230, 2005.
    Bruton, C. J., Phillips, B. L., Meike, A., Martin, S., & Viani, B. E., cement minerals at elevated temperature : Thermodynamic and structural characteristics. MRS Online Proceedings Library Archive, 333, 327–334, 1993.
    Carmona, M., Pérez, A., DeLucas, A., Rodríguez, L., & Rodriguez, J. F., Removal of chloride ions from an industrial polyethylenimine flocculant shifting it into an adhesive promoter using the anion exchange resin Amberlite IRA-420. Reactive and Functional Polymers, 68(8), 1218–1224, 2008.
    Chang, C. Y., Wang, C. F., Mui, D. T., Cheng, M. T., & Chiang, H. L., Characteristics of elements in waste ashes from a solid waste incinerators in Taiwan. Journal of Hazardous Materials, 165(1–3), 766–773, 2009.
    Chen, X., Bi, Y., Zhang, H., & Wang, J., Chlorides removal and control through water-washing process on MSWI fly ash. Procedia Environmental Sciences, 31, 560–566, 2016.
    Chen, Z., Lu, S., Tang, M., Ding, J., Buekens, A., Yang, J., Yan, J., Mechanical activation of fly ash from MSWI for utilization in cementitious materials. Waste Management, 88, 182–190, 2019.
    Chiang, K. Y., & Hu, Y. H., Water washing effects on metals emission reduction during municipal solid waste incinerators(MSWI)fly ash melting process. Waste Management, 30(5), 831–838, 2010.
    Suryavanshi, A. K., & Scantlebury, J. D. (). The binding of chloride ions by sulphate resistant portland cement. cement and Concrete Research, 25(3), 581–592, 1995.
    Choi, Y., Kim, J., & Lee, K., Corrosion behavior of steel bar embedded in fly ash concrete. Corrosion Science, 48, 1733–1745, 2006.
    Fahami, A., Duraia, E. S. M., Beall, G. W., & Fahami, M., Facile synthesis and structural insight of chloride intercalated Ca/Al layered double hydroxide nanopowders. Journal of Alloys and Compounds, 727, 970–977, 2017.
    Gan, S., Goh, Y. R., Clarkson, P. J., Parracho, A., Nasserzadeh, V., & Swithenbank, J., Formation and elimination of polychlorinated dibenzo- p -dioxins and polychlorinated dibenzofurans from municipal solid waste incinerators. Combustion Science and Technology, 175(1), 103–124, 2003.
    Gao, X., Wang, W., Ye, T., Wang, F., & Lan, Y., Utilization of washed MSWI fly ash as partial cement substitute with the addition of dithiocarbamic chelate. Journal of Environmental Management, 88(2), 293–299, 2008.
    BP statistical review of world energy about this review. Statistical Review of World Energy, BP p.l.c., UK, 2016.
    Goh, K. H., Lim, T. T., Banas, A., & Dong, Z., Sorption characteristics and mechanisms of oxyanions and oxyhalides having different molecular properties on Mg/Al layered double hydroxide nanoparticles. Journal of Hazardous Materials, 179(1–3), 818–827, 2010.
    Gruber, K. A., Ramlochan, T., Boddy, A., Hooton, R. D., & Thomas, M. D. A., Increasing concrete durability with high-reactivity metakaolin. cement & Concrete Composites, 23, 479–484, 2001.
    Haiying, Z., Youcai, Z., & Jingyu, Q., Study on use of MSWI fly ash in ceramic tile. Journal of Hazardous Materials, 141(1), 106–114, 2007.
    Haiying, Z., Youcai, Z., & Jingyu, Q., Utilization of municipal solid waste incineration(MSWI)fly ash in ceramic brick: Product characterization and environmental toxicity. Waste Management, 31(2), 331–341, 2011.
    Hassan, H. F., Recycling of municipal solid waste incinerators ash in hot-mix asphalt concrete. Construction and Building Materials, 19(2), 91–98, 2005.
    He, P. J., Zhang, H., Zhang, C. G., & Lee, D. J., Characteristics of air pollution control residues of MSW incineration plant in Shanghai. Journal of Hazardous Materials, 116(3), 229–237, 2004.
    Hu, Y., Zhang, P., Chen, D., Zhou, B., Li, J., & Li, X. wei., Hydrothermal treatment of municipal solid waste incineration fly ash for dioxin decomposition. Journal of Hazardous Materials, 207–208, 79–85, 2012.
    Huang, W. J., & Lo, J. S., Synthesis and efficiency of a new chemical fixation agent for stabilizing MSWI fly ash. Journal of Hazardous Materials, 112(1–2), 79–86, 2004.
    Izumikawa, C., Metal recovery from fly ash generated from vitrification process for MSW ash. Waste Management, 16(5–6), 501–507, 1996.
    Kameda, T., Yoshioka, T., Mitsuhashi, T., Uchida, M., & Okuwaki, A., The simultaneous removal of calcium and chloride ions from calcium chloride solution using magnesium–aluminum oxide. Water Research, 37(16), 4045–4050, 2003.
    Kikuchi, R., Recycling of municipal solid waste for cement production: pilot-scale test for transforming incineration ash of solid waste into cement clinker. Resources, Conservation and Recycling, 31(2), 137–147, 2001.
    Kurashima, K., Matsuda, K., Kumagai, S., Kameda, T., Saito, Y., & Yoshioka, T., A combined kinetic and thermodynamic approach for interpreting the complex interactions during chloride volatilization of heavy metals in municipal solid waste fly ash. Waste Management, 87, 204–217, 2019.
    Lam, C. H. K., Ip, A. W. M., Barford, J. P., & McKay, G., Use of incineration MSW ash: A review. Sustainability, 2(7), 1943–1968, 2010.
    Li, Y., Hao, L., & Chen, X., Analysis of MSWI bottom ash reused as alternative material for cement production. Procedia Environmental Sciences, 31, 549–553, 2016.
    Liang, X., Zang, Y., Xu, Y., Tan, X., Hou, W., Wang, L., & Sun, Y., Sorption of metal cations on layered double hydroxides. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 433(31), 122–131, 2013.
    Lim, T.-T., Goh, K. H., Goei, R., & Dong, Z. L., Mechanistic and thermodynamic studies of oxyanion sorption by various synthetic Mg/Al layered double hydroxides. Water Science and Technology, 59(5), 1011–1017, 2009.
    Lin, K. L., Wang, K. S., Tzeng, B. Y., & Lin, C. Y., The hydration characteristics and utilization of slag obtained by the vitrification of MSWI fly ash. Waste Management, 24(2), 199–205, 2004.
    Liu, S. J., Guo, Y. P., Yang, H. Y., Wang, S., Ding, H., & Qi, Y., Synthesis of a water-soluble thiourea-formaldehyde(WTF)resin and its application to immobilize the heavy metal in MSWI fly ash. Journal of Environmental Management, 182, 328–334, 2016.
    Lu, J. W., Zhang, S., Hai, J., & Lei, M., Status and perspectives of municipal solid waste incineration in China: A comparison with developed regions. Waste Management, 69, 170–186, 2017.
    Lu, X., Li, C., & Haixia, Z., Revisited to the relationship between the free and total chloride diffusivity in concrete. Journal of Marine Science and Technology, 18(3), 442–448, 2010.
    Luan, J., Chai, M., & Li, R., Heavy metal migration and potential environmental risk assessment during the washing process of MSW incineration fly ash and molten slag. Procedia Environmental Sciences, 31, 351–360, 2016.
    Lv, L., He, J., Wei, M., Evans, D. G., & Duan, X., Uptake of chloride ion from aqueous solution by calcined layered double hydroxides: equilibrium and kinetic studies. Water Research, 40(4), 735–743, 2006.
    Lv, L., Sun, P., Gu, Z., Du, H., Pang, X., Tao, X., …Xu, L., Removal of chloride ion from aqueous solution by ZnAl-NO3 layered double hydroxides as anion-exchanger. Journal of Hazardous Materials, 161(2–3), 1444–1449, 2009.
    Mitsuda, T., Sasaki, K., & Hideki, I., Phase evolution during autoclaving process. Journal of the American Ceramic Society, 75(72), 1858–1863, 1992.
    Ni, P., Xiong, Z., Tian, C., Li, H., Zhao, Y., Zhang, J., & Zheng, C., Influence of carbonation under oxy-fuel combustion flue gas on the leachability of heavy metals in MSWI fly ash. Waste Management, 67, 171–180, 2017.
    Nocuń-Wczelik, W., Effect of some inorganic admixtures on the formation and properties of calcium silicate hydrates produced in hydrothermal conditions. cement and Concrete Research, 27(1), 83–92, 1997.
    Ole, H., Disposal strategies for municipal solid waste incineration residues. Journal of Hazardous Materials, 47(1–3), 345–368, 1996.
    Palmer, S. J., & Frost, R. L., Use of hydrotalcites for the removal of toxic anions from aqueous solutions. Industrial & Engineering Chemistry Research, 49(19), 8969–8976, 2010.
    Polettini, A., Pomi, R., Sirini, P., & Testa, F., Properties of portland cement—stabilised MSWI fly ashes. Journal of Hazardous Materials, 88(1), 123–138, 2001.
    Qu, J., Zhang, Q., Li, X., He, X., & Song, S., Mechanochemical approaches to synthesize layered double hydroxides: A review. Applied Clay Science, 119, 185–192, 2016.
    Qu, X., & Zhao, X., Previous and present investigations on the components, microstructure and main properties of autoclaved aerated concrete – A review. Construction and Building Materials, 135, 505–516, 2017.
    Rabenau, A., The role of hydrothermal synthesis in preparative chemistry. Angewandte Chemie International Edition in English, 24(12), 1026–1040, 1985.
    Rashid, R. A., & Frantz, G. C., MSW incinerators ash as aggregate in concrete and masonry. Journal of Materials in Civil Engineering, 4(4), 353–368, 1992.
    Sawade, K., Matsuda, H., & Mizutani, M., Immobilization of lead compounds in fly ash by mixing with asphalt, Sulfur and Sodium Hydroxide. Journal of chemical engineering of japan, 34(7), 878–883, 2001.
    Schubert, U., & Hüsing, N., Subcritical solvothermal synthesis of condensed inorganic materials, Chemical Society Reviews, 13, 230-238, 2012.
    Shi, H., Deng, K., Yuan, F., & Wu, K., Preparation of the saving-energy sulphoaluminate cement using MSWI fly ash. Journal of Hazardous Materials, 169(1–3), 551–555, 2009.
    Shi, X., Xie, N., Fortune, K., & Gong, J., Durability of steel reinforced concrete in chloride environments: An overview. Construction and Building Materials, 30, 125–138, 2012.
    Shih, P.-H., Chang, J.-E., & Chiang, L.-C., Replacement of raw mix in cement production by municipal solid waste incineration ash. cement and Concrete Research, 33(11), 1831–1836, 2003.
    Sun, X., Li, J., Zhu, B., Zhang, G., & Zhao, X., A review on the management of municipal solid waste fly ash in american. Procedia Environmental Sciences, 31, 535–540, 2016.
    Tang, Q., Zhang, Y., Gao, Y., & Gu, F., Use of cement-chelated, solidified, municipal solid waste incinerators(MSWI)fly ash for pavement material: mechanical and environmental evaluations. Canadian Geotechnical Journal, 54(11), 1553–1566, 2017.
    Vicente Rives., Layered Double Hydroxides: Present and Future. Nova Science Publishers, New York, 2001.
    Walton, R. I., Subcritical solvothermal synthesis of condensed inorganic materials. Chemical Society Reviews, 31(4), 230–238, 2002.
    Wang, K. S., Chiang, K. Y., Perng, J. K., & Sun, C. J., The characteristics study on sintering of municipal solid waste incinerators ashes. Journal of Hazardous Materials, 59(2–3), 201–210, 1998.
    Wang, Y., & Gao, H., Compositional and structural control on anion sorption capability of layered double hydroxides(LDHs). Journal of Colloid and Interface Science, 301(1), 19–26, 2006.
    Wang, J. hua, Cai, G., &Wu, Q.. Basic mechanical behaviours and deterioration mechanism of RC beams under chloride-sulphate environment. Construction and Building Materials, 160, 450–461, 2018.
    World Bank Group., Urban development series: waste generation. What A Waste: A Global Review of Solid Waste Management, 8–12, 2012.
    Xue, Y., Hou, H., Zhu, S., & Zha, J., Utilization of municipal solid waste incineration ash in stone mastic asphalt mixture: Pavement performance and environmental impact. Construction and Building Materials, 23(2), 989–996, 2009.
    Yamaguchi, H., Shibuya, E., Kanamaru, Y., Uyama, K., Nishioka, M., & Yamasaki, N., Hydrothermal decomposition of PCDDs/PCDFs in MSWI fly ash. 32(1), 203–208, 1996.
    Zhang, B., Zhou, W., Zhao, H., Tian, Z., Li, F., & Wu, Y., Stabilization/solidification of lead in MSWI fly ash with mercapto functionalized dendrimer chelator. Waste Management, 50, 105–112, 2016.
    Zhao, Y., Song, L., & Li, G., Chemical stabilization of MSW incinerators fly ashes. Journal of Hazardous Materials, 95(1–2), 47–63, 2002.
    Zhu, F., Takaoka, M., Oshita, K., Kitajima, Y., Inada, Y., Morisawa, S., & Tsuno, H., Chlorides behavior in raw fly ash washing experiments. Journal of Hazardous Materials, 178(1–3), 547–552, 2010.
    行政院環境保護署,環境白皮書,245–277頁,2017。
    江宗達,稻殼灰以水熱法合成矽酸鈣之研究,大同大學,材料工程研究所,碩士論文,2007。
    林修毅,垃圾焚化飛灰資源化處理之研究—作為水泥原料,國立臺北科技大學,環境工程與管理研究所,碩士論文,2013。
    沈奕銘,焚化飛灰無害後取代水泥熟料可行性之研究,國立臺北科技大學,環境工程與管理研究所,碩士論文,2013。
    李祐承,焚化飛灰與脫硫石膏產置高溫蒸氣養護氣泡混凝土之研究,國立成功大學環境工程學系,碩士論文,2013。
    胡靜,呂亮,鎂鋁水滑石去除氯鹽性能研究,工業水處理,28卷,59–60頁,2008。
    高月紘,集 じん 灰 バ ンカ ー爆 発 事 故 の教 訓,69–76頁,1994。
    黃兆龍,混凝土性質與行為(初版),詹氏出版社,台灣,2007。
    張建智,電化學除鹽對含氯混凝土中鋼筋腐蝕行為及握裹性質影響之研究,國立海洋大學,河海工程學系,碩士論文,2000。
    陳豪吉,焚化廠反應灰及飛灰再生為輕質粒料之研究內政部建築研究所委託研究報告,2008。
    曾亦宏,飛灰中戴奧辛類化合物之分佈特性研究,屏東科技大學,環境工程與科學系,碩士論文,2003。
    曾迪華,廢棄物與資源再生,環境工程會刊,1–16頁,2012。
    謝錦松,黃正義,固體廢棄物處理,淑馨出版社,台北市,1997。
    劉政樺,王明光,王尚禮,利用層狀雙氫氧化物移除水中的砷酸鹽,國立臺灣大學,農業化學所,碩士論文,1–69頁,2007。

    下載圖示 校內:2023-08-01公開
    校外:2025-08-01公開
    QR CODE