| 研究生: |
朴睿洋 kumar, prashant |
|---|---|
| 論文名稱: |
Robotic manipulation of 2D materials Robotic manipulation of 2D materials |
| 指導教授: |
吳馬丁
Torbjörn Nordling |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 英文 |
| 論文頁數: | 70 |
| 外文關鍵詞: | Graphene, Robotic arm |
| 相關次數: | 點閱:142 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
石墨烯在基礎研究和應用研究方面都引起了極大的關注。科學家們之所以對石墨烯感興趣,是因為其新穎獨特的特性。大規模生產石墨烯薄膜的主要方法是化學氣相沉積(CVD)。CVD石墨烯一般生長在金屬基底上,時常被當作基底於一般電子器件。傳統的轉移過程需要對研究人員進行大量的培訓才能進行,才不會出現撕裂或折疊,從而使石墨烯的性能惡化。在這裡,我們採用機械手臂來進行石墨烯的自動轉移。我們探討了使用市售機械臂協助這些任務的可行性,通過確定其能力和局限性。我們表明,在轉移過程中對石墨烯的損傷最小的可重複轉移是可能的開環運算,即沒有任何控制系統根據石墨烯的位置調整機械手臂的位置。我們只研究了10個石墨烯樣品並進行20次重複演算,因此需要進一步研究來證實石墨烯的質量以及優化機械手臂在轉移過程中的應用。
Graphene has attracted great attention in both fundamental and applied research. The reason why scientists are interested in graphene is due to its novel and unique properties. The main method to produce graphene thin films on a large scale is Chemical vapor deposition (CVD).
CVD graphene is generally grown on a metallic substrate and typically needed to be transferred to some other substrate to produce electronic devices. The conventional transfer process requires significant training of researchers to conduct without tearing or folding which deteriorates graphene’s properties.
Here we are employing a robotic arm to conduct automated graphene transfer. We explore the viability of using commercially available robotic arms to assist in these tasks by identifying its ability and limitations. We show that reproducible transfer with minimal damage to the graphene during transfer is possible in open loop, i.e. without any control system adjusting the position of the robotic arm based on the position of the graphene. We only examined 10 graphene samples and up to 20 repetitions so further studies are needed to characterize the graphene quality and optimize the use of the robotic arm in the transfer process.
REFERENCES
[1] Dinc, A.E., & Pehlivan, F. (2007). Laboratory experiences and 3D measurements with AL5A Robot Arm [Unpublished bachelor’s thesis]. Politecnico di Milano.
[2] Puangmali, P., Althoefer, K., Seneviratne, L. D., Murphy, D., & Dasgupta, P. (2008). State-of-the-art in force and tactile sensing for minimally invasive surgery. IEEE Sensors Journal, 8(4), 371–381.
[3] Kaynak O., Tosunoglu S., & Ang, M. (1999). Recent advances in mechatronics. Springer.
[4] Yong, C.K. (2013). Designing a robotic platform [Unpublished bachelor’s graduation project]. University of Twente.
[5] Keeble, B., Pierce, J., Posada, J., & Shao, Z.H. (2014). Pick and Place Robotic Arm Manipulator [Unpublished final project]. Dalhousie University.
[6] Parviz, B.A. (2006, October 23–24). Self-Assembly for Micron-Scale Robotics [Workshop paper presentation]. Micro & Nano Robotics Workshop, Paris, France. http://iarp06.robot.jussieu.fr/Papers/Parviz/Babak%20Parviz%20Full%20Paper.pdf
[7] Prospector. (2006, February 24). Mini Robots for Lab Teamwork. Robot Gossip. http://robotgossip.blogspot.com/2006/02/mini-robots-for-lab-teamwork.html
[8] Wulfsberg, J.-P., Hilpert, S.-E., Kuhn, A., & Lehmann, J. (2004). Micromachining center based on the Integration of various Technologies in one coordinate system. Proceedings of the 4th International Conference of the European Society for Precision Engineering and Nanotechnology. 95–96.
[9] Bennett, R. V., Morzan, E. M., Huckaby, J. O., Monge, M. E., Christensen, H. I., & Fernández, F. M. (2014). Robotic plasma probe ionization mass spectrometry (RoPPI-MS) of non-planar surfaces. Analyst, 139(11), 2658–2662.
[10] Siegwart, R., Nourbakhsh, I. R., & Scaramuzza, D. (2011). Introduction to autonomous mobile robots. MIT press.
[11] Geim, A., Novoselov, K. (2007). The rise of graphene. Nature Mater, 6, 183–191. https://doi.org/10.1038/nmat1849
[12] Losurdo, M., Giangregorio, M. M., Capezzuto, P., & Bruno, G. (2011). Graphene CVD growth on copper and nickel: role of hydrogen in kinetics and structure. Physical Chemistry Chemical Physics, 13(46), 20836–20843. https://doi.org/10.1039/c1cp22347j
[13] Muñoz, R., & Gómez‐Aleixandre, C. (2013). Review of CVD synthesis of graphene. Chemical Vapor Deposition, 19(10–12), 297–322. https://doi.org/10.1002/cvde.201300051
[14] Bae, S., Kim, H., Lee, Y., Xu, X., Park, J. S., Zheng, Y., ... & Kim, Y. J. (2010). Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nature Nanotechnology, 5(8), 574. https://doi.org/10.1038/nnano.2010.132
[15] Liang, X., Sperling, B. A., Calizo, I., Cheng, G., Hacker, C. A., Zhang, Q., ... & Zhu, X. (2011). Toward clean and crackless transfer of graphene. ACS Nano, 5(11), 9144–9153. https://doi.org/10.1021/nn203377t
[16] Barin, G. B., Song, Y., de Fátima Gimenez, I., Souza Filho, A. G., Barreto, L. S., & Kong, J. (2015). Optimized graphene transfer: Influence of polymethylmethacrylate (PMMA) layer concentration and baking time on graphene final performance. Carbon, 84, 82–90. https://doi.org/10.1016/j.carbon.2014.11.040
[17] Song, J., Kam, F. Y., Png, R. Q., Seah, W. L., Zhuo, J. M., Lim, G. K., ... & Chua, L. L. (2013). A general method for transferring graphene onto soft surfaces. Nature Nanotechnology, 8(5), 356–362. https://doi.org/10.1038/Nnano.2013.63
[18] Hansen, S.P. (2008, April 1st). Mixing it Up: Part 1 - Gas Delivery & Pressure Control in Process Vacuum Systems. The Bell Jar. https://www.belljar.net/vtc_articles.htm
[19] Whyte, W. (2001). Cleanroom technology: Fundamentals of design, testing, and operation. John Wiley & Sons.
[20] Puangmali, P., Althoefer, K., Seneviratne, L. D., Murphy, D., & Dasgupta, P. (2008). State-of-the-art in force and tactile sensing for minimally invasive surgery. IEEE Sensors Journal, 8(4), 371–381. https://doi.org/10.1109/JSEN.2008.917481
[21] Roth, A. (1994). Vacuum sealing technique (AVS classics in vacuum science and technology). American Institute of Physics.
[22] Lafferty, J.M. (Ed.) (1998). Foundations of vacuum science and technology. Wiley-Interscience.
[23] Vilcins, S., Holz, M., & Bandke, D. (2018). A new sealing technology for high precision wide open UHV vacuum flange and waveguide connections with metal gaskets. Proceedings of Mechanical Engineering: Design of Synchrotron Radiation Equipment and Instrumentation (MEDSI2018) Paris, France, 125–128.
[24] Zurutuza, A., & Marinelli, C. (2014). Challenges and opportunities in graphene commercialization. Nature Nanotechnology, 9(10), 730–734. https://doi.org/10.1038/nnano.2014.225
[25] Zhang, J., Xia, Z., & Dai, L. (2015). Carbon-based electrocatalysts for advanced energy conversion and storage. Science Advances, 1(7), e1500564. https://doi.org/10.1126/sciadv.1500564
[26] Abergel, D. S. L., Apalkov, V., Berashevich, J., Ziegler, K., & Chakraborty, T. (2010). Properties of graphene: A theoretical perspective. Advances in Physics, 59(4), 261–482. https://doi.org/10.1080/00018732.2010.487978
[27] Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., ... & Firsov, A. A. (2004). Electric field effect in atomically thin carbon films. Science, 306(5696), 666–669. https://doi.org/10.1126/science.1102896
[28] Zhang, Y., Tan, Y. W., Stormer, H. L., & Kim, P. (2005). Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nature, 438(7065), 201–204. https://doi.org/10.1038/nature04235
[29] Bolotin, K. I., Sikes, K. J., Jiang, Z., Klima, M., Fudenberg, G., Hone, J., ... & Stormer, H. L. (2008). Ultrahigh electron mobility in suspended graphene. Solid State Communications, 146(9–10), 351–355. https://doi.org/10.1016/j.ssc.2008.02.024
[30] Nair, R. R., Blake, P., Grigorenko, A. N., Novoselov, K. S., Booth, T. J., Stauber, T., ... & Geim, A. K. (2008). Fine structure constant defines visual transparency of graphene. Science, 320(5881), 1308–1308. https://doi.org/10.1126/science.1156965
[31] Cai, W., Moore, A. L., Zhu, Y., Li, X., Chen, S., Shi, L., & Ruoff, R. S. (2010). Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition. Nano Letters, 10(5), 1645–1651. https://doi.org/10.1021/nl9041966
[32] Lee, C., Wei, X., Kysar, J. W., & Hone, J. (2008). Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 321(5887), 385–388. https://doi.org/10.1126/science.1157996
[33] Lin, Y. M., Dimitrakopoulos, C., Jenkins, K. A., Farmer, D. B., Chiu, H. Y., Grill, A., & Avouris, P. (2010). 100-GHz transistors from wafer-scale epitaxial graphene. Science, 327(5966), 662–662. https://doi.org/10.1126/science.1184289
[34] Lin, Y. M., Valdes-Garcia, A., Han, S. J., Farmer, D. B., Meric, I., Sun, Y., ... & Jenkins, K. A. (2011). Wafer-scale graphene integrated circuit. Science, 332(6035), 1294–1297. https://doi.org/10.1126/science.1204428
[35] Yang, H., Heo, J., Park, S., Song, H. J., Seo, D. H., Byun, K. E., ... & Kim, K. (2012). Graphene barristor, a triode device with a gate-controlled Schottky barrier. Science, 336(6085), 1140–1143. https://doi.org/10.1126/science.1220527
[36] Hempel, M., Nezich, D., Kong, J., & Hofmann, M. (2012). A novel class of strain gauges based on layered percolative films of 2D materials. Nano Letters, 12(11), 5714–5718. https://doi.org/10.1021/nl302959a
[37] Schedin, F., Geim, A. K., Morozov, S. V., Hill, E. W., Blake, P., Katsnelson, M. I., & Novoselov, K. S. (2007). Detection of individual gas molecules adsorbed on graphene. Nature Materials, 6(9), 652–655. https://doi.org/10.1038/nmat1967
[38] Fowler, J. D., Allen, M. J., Tung, V. C., Yang, Y., Kaner, R. B., & Weiller, B. H. (2009). Practical chemical sensors from chemically derived graphene. ACS Nano, 3(2), 301–306. https://doi.org/10.1021/nn800593m
[39] Xia, F., Mueller, T., Lin, Y. M., Valdes-Garcia, A., & Avouris, P. (2009). Ultrafast graphene photodetector. Nature Nanotechnology, 4(12), 839–843. https://doi.org/10.1038/nnano.2009.292
[40] Wang, X., Zhi, L., & Müllen, K. (2008). Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Letters, 8(1), 323–327. https://doi.org/10.1021/nl072838r
[41] Park, H., Rowehl, J. A., Kim, K. K., Bulovic, V., & Kong, J. (2010). Doped graphene electrodes for organic solar cells. Nanotechnology, 21(50), 505204. https://doi.org/10.1088/0957-4484/21/50/505204
[42] Gomez De Arco, L., Zhang, Y., Schlenker, C. W., Ryu, K., Thompson, M. E., & Zhou, C. (2010). Continuous, highly flexible, and transparent graphene films by chemical vapor deposition for organic photovoltaics. ACS Nano, 4(5), 2865–2873. https://doi.org/10.1021/nn901587x
[43] Park, H., Brown, P. R., Bulović, V., & Kong, J. (2012). Graphene as transparent conducting electrodes in organic photovoltaics: studies in graphene morphology, hole transporting layers, and counter electrodes. Nano Letters, 12(1), 133–140. https://doi.org/10.1021/nl2029859
[44] Min, S. K., Kim, W. Y., Cho, Y., & Kim, K. S. (2011). Fast DNA sequencing with a graphene-based nanochannel device. Nature Nanotechnology, 6(3), 162–165. https://doi.org/10.1038/nnano.2010.283
[45] Dhiman, P., Yavari, F., Mi, X., Gullapalli, H., Shi, Y., Ajayan, P. M., & Koratkar, N. (2011). Harvesting energy from water flow over graphene. Nano Letters, 11(8), 3123–3127. https://doi.org/10.1021/nl2011559
[46] Hu, W., Peng, C., Luo, W., Lv, M., Li, X., Li, D., ... & Fan, C. (2010). Graphene-based antibacterial paper. ACS Nano, 4(7), 4317–4323. https://doi.org/10.1021/nn101097v
[47] Grande, L., Chundi, V. T., Wei, D., Bower, C., Andrew, P., & Ryhaenen, T. (2012). Graphene for energy harvesting/storage devices and printed electronics. Particuology, 10(1), 1–8. https://doi.org/10.1016/j.partic.2011.12.001
[48] Boscá, A., Pedrós, J., Martínez, J., Palacios, T., & Calle, F. (2016). Automatic graphene transfer system for improved material quality and efficiency. Scientific Reports, 6, 21676. https://doi.org/10.1038/srep21676
[49] DOBOT. (2019, December 20). DOBOT Mooz. https://www.dobot.cc/
[50] Philips’Gloeilampenfabrieken, O. (1958). A method of measuring specific resistivity and Hall effect of discs of arbitrary shape. Philips Res. Rep, 13(1), 1-9