簡易檢索 / 詳目顯示

研究生: 蘇天祐
Pinayungan, Bernardinus Sandiko
論文名稱: 火災後剛度減少法下鋼筋混凝土柱和樑性能的數值分析
Numerical Analysis of the Performance of Reinforced Concrete Columns and Beams with Post-Fire Stiffness Reduction Method
指導教授: 劉光晏
Liu, Kuang-Yen
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 英文
論文頁數: 124
外文關鍵詞: Heat Transfer Analysis, Fire Damage, 500°C Isotherm Method, Nonlinear Static Pushover Analysis, Seismic Behavior, TEASPA, Moment of Inertia Reduction
相關次數: 點閱:65下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Fire represents a dual-sided force integral to human progress yet fraught with significant risks. The confluence of fire and seismic events poses a significant threat to human activities, as fire damage can compromise the earthquake resistance of structures. Evaluating a building's seismic resilience typically involves performance-based design and nonlinear static analysis, such as the Pushover Analysis Procedure. However, fire damage alters the structural members' shape and cross-section, reducing the moment of inertia in columns and beams.
    This research aims to develop a formula for the reduction of moment of inertia in fire-damaged reinforced concrete columns and beams with varying cross-sections and scenarios, based on the Temperature Isotherm Method and to assess the behavior of post-fire damaged considering the moment of inertia reduction from the proposed formula. The study is conducted by doing heat transfer analysis using finite element software ABAQUS. The formula will be applied to assess the post-fire structural behavior of reinforced concrete columns and beams, including moment-curvature, axial load-moment, load-deflection relationships, and static pushover curves. Seismic behavior assessment will incorporate plastic hinge properties generated by TEASPA from the National Center for Research on Earthquake Engineering.
    The formula's applicability was validated numerically. For columns, the moment-curvature and axial load-moment relationships showed that the 500°C isotherm is conservative for predicting residual strength after 90 minutes of fire exposure. For beams, the load-displacement analysis indicated that post-fire static models better align with ACI 318 flexural stiffness reductions than those from ASCE. Static pushover analyses of CF1, CF2, and CF3 models demonstrated that the 700°C isotherm method accurately matched experimental than 600°C and 500°C isotherm.

    ABSTRACT i ACKNOWLEDGEMENT ii TABLE OF CONTENTS iii LIST OF TABLES v LIST OF FIGURES viii CHAPTER 1 INTRODUCTION 1 1.1 Research Introduction 1 1.2 Research Objectives 2 1.3 Limitation and Scope of Project 2 CHAPTER 2 LITERATURE REVIEW 5 2.1 Properties of Concrete at Elevated Temperature 5 2.1.1 Concrete Density 5 2.1.2 Concrete Thermal Conductivity 5 2.1.3 Concrete Specific Heat 7 2.1.4 Concrete Thermal Elongation Coefficient 7 2.2 Mechanical Behavior of Concrete at High Temperature 8 2.2.1 Concrete Compressive Strength 8 2.2.2 Concrete Tensile Strength 8 2.2.3 Concrete Stress-Strain Curve 9 2.3 Properties of Steel at Elevated Temperature 10 2.3.1 Thermal Conductivity of Steel 10 2.3.2 Specific Heat of Steel 10 2.3.3 Thermal Elongation of Steel 11 2.4 Mechanical Behavior of Steel after Cooling Down 11 2.5 Fire Simulation 12 2.5.1 ISO834 Fire Curve 12 2.5.2 Heat Transfer Simulation 13 2.6 Structural Behavior of Post-fire Reinforced Concrete Column and Beam 13 2.6.1 TEASPA 13 2.6.2 Behavior and Analysis of Post-fire Reinforced Concrete Column 14 2.6.3 Behavior and Analysis of Post-fire Reinforced Concrete Beam 15 2.7 500o Isotherm Method from Eurocode 2 16 CHAPTER 3 RESEARCH METHODS 33 3.1 Heat Transfer Analysis (ABAQUS/CAE) 33 3.2 XTRACT Cross-Section Analysis Software 35 3.3 TEASPA 36 3.4 ETABS 36 CHAPTER 4 HEAT TRANSFER ANALYSIS AND PROPOSED FORMULA OF MOMENT INERTIA REDUCTION 39 4.1 Introduction 39 4.2 Model Construction 39 4.2.1 Building Parts (Part) 39 4.2.2 Set Material Properties (Property) 40 4.2.3 Assembly 40 4.2.4 Setting steps (Step) 40 4.2.5 Interaction 41 4.2.6 Load and Attributes 41 4.2.7 Mesh and Element Type 42 4.2.8 Setup (Job) 42 4.3 Result and Verification of Heat Transfer Analysis 42 4.4 Proposed Formula of Reduction of Moment Inertia 43 CHAPTER 5 ASSESSMENT OF POST-FIRE RC MEMBER CONSIDERING THE TEMPERATURE ISOTHERM METHOD 63 5.1 Introduction 63 5.2 Moment-Curvature and Axial Load-Moment Diagram of Reinforced Concrete Column 63 5.2.1 Input of Section and Properties 64 5.2.2 Result and Comparison 64 5.3 Load-Deflection Relationship of Reinforced Concrete Beam 65 5.3.1 Input of Section and Properties 65 5.3.2 Result and Verification 66 5.4 Static Pushover Analysis 67 5.4.1 Input of Section and Properties 67 5.4.2 Plastic Hinge Model 68 5.4.3 Result and Verification 69 CHAPTER 6 CONCLUSIONS AND RECOMMENDATIONS 93 6.1 Conclusion 93 6.2 Recommendation 94 REFERENCES 95 APPENDIX 99

    1. ACI Committee 216, Guide for Determining the Fire Endurance of Concrete Elements,” American Concrete Institute, 1994.
    2. American Concrete Institute. Building Code Requirements for Structural Concrete (ACI 318-19M) and Commentary. American Concrete Institute, Farmington Hills, MI, 2019.
    3. American Society of Civil Engineers. Seismic Evaluation and Retrofit of Existing Buildings (ASCE/SEI 41-13). American Society of Civil Engineers, Reston, VA, 2014.
    4. ANSYS, Inc. XTRACT: Cross-Section Analysis Software User Manual. ANSYS, Inc., Canonsburg, PA, 2009.
    5. Applied Technology Council. Seismic Evaluation and Retrofit of Concrete Buildings (ATC-40). Applied Technology Council, Redwood City, CA, 1996.
    6. Balaji, A., Nagarajan, P., & Pillai, T. M. Studies on the behavior of reinforced concrete short column subjected to fire. Alexandria Engineering Journal, 55(1), 475-486, 2016.
    7. BPS Jakarta. Frekuensi Kebakaran, Obyek Terbakar, Penghuni, Jumlah Korban dan Taksiran Kerugian - Tabel Statistik. Bps.go.id; Badan Pusat Statistik Kota Jakarta Barat. https://jakbarkota.beta.bps.go.id/id/statistics-table/2/MjQ3IzI=/frekuensi-kebakaran-obyek-terbakar-penghuni-jumlah-korban-dan-taksiran-kerugian.html, 2024.
    8. BPS Kota Administrasi Jakarta Barat. Frekuensi Kebakaran menurut Penyebabnya. https://jakbarkota.bps.go.id/indicator/34/246/1/frekuensi-kebakaran-menurut-penyebabnya.html, 2021.
    9. Brown, T. D., & Javaid, M. Y. The thermal conductivity of fresh concrete. Matériaux et Construction, 3, 411-416, 1970.
    10. Cai, B., Li, B., & Fu, F. Finite element analysis and calculation method of residual flexural capacity of post-fire RC beams. International Journal of Concrete Structures and Materials, 14, 1-17, 2020.
    11. Computers and Structures, Inc. ETABS: Building Analysis and Design. Retrieved June 24, 2024, from https://www.csiamerica.com/products/etabs.
    12. Costa, L. M. D., Silva, J. J. D. R., Oliveira, T. A. D. C. P. D., & Duarte, D. C. D. L. Applicability of the 500° C isotherm method in determining the strength of reinforced concrete beams after fire. Revista IBRACON de Estruturas e Materiais, 15, e15202, 2021.
    13. Dassault Systèmes. ABAQUS User Manual (Version 6.6). Retrieved from https://classes.engineering.wustl.edu/2009/spring/mase5513/abaqus/docs/v6.6/books/usb/default.html, 2006.
    14. Demir, U., Goksu, C., Binbir, E., & Ilki, A. Impact of time after fire on post-fire seismic behavior of RC columns. In Structures, 26, 537-548, Elsevier, August 2020.
    15. Earthquakelist.org (updated daily). Earthquakelist.org. https://earthquakelist.org/reports/top-100-countries-most-earthquakes/#2023, 2023.
    16. European Committee for Standardization. Eurocode 1: Actions on Structures - Part 1-2: General Actions - Actions on Structures Exposed to Fire (EN 1991-1-2). CEN, Brussels, Belgium, 2002.
    17. European Committee for Standardization. Eurocode 2: Design of Concrete Structures - Part 1-1: General Rules and Rules for Buildings (EN 1992-1-1). CEN, Brussels, Belgium, 2004.
    18. European Committee for Standardization. Eurocode 2: Design of Concrete Structures - Part 1-2: General Rules - Structural Fire Design (EN 1992-1-2). CEN, Brussels, Belgium, 2004.
    19. European Committee for Standardization. Eurocode 3: Design of Steel Structures - Part 1-2: General Rules - Structural Fire Design (EN 1993-1-2). CEN, Brussels, Belgium, 2005.
    20. Issa, C. A., & Izadifard, R. A. Numerical simulation of the experimental behavior of RC beams at elevated temperatures. Advanced Modeling and Simulation in Engineering Sciences, 8(1), 12, 2021.
    21. Kim, K. H., Jeon, S. E., Kim, J. K., & Yang, S. An experimental study on thermal conductivity of concrete. Cement and Concrete Research, 33(3), 363-371, 2003.
    22. Kodur, V., & Raut, N. A simplified approach for predicting fire resistance of reinforced concrete columns under biaxial bending. Engineering Structures, 41, 428-443, 2012.
    23. Kodur, V. Properties of concrete at elevated temperatures. International Scholarly Research Notices, 2014(1), 468510, 2014.
    24. Lamond, J. F., & Pielert, J. H. (Eds.). Significance of Tests and Properties of Concrete and Concrete-Making Materials (STP 169D). ASTM International, West Conshohocken, PA, 2006.
    25. Lapuebla-Ferri, A., Pons, D., & Romero, M. L. Load and temperature influence on the post-fire mechanical properties of steel reinforcements. Journal of Constructional Steel Research, 185, 106866, 2021.
    26. Leibowitz, L., & Blomquist, R. A. Thermal conductivity and thermal expansion of stainless steels D9 and HT9. International Journal of Thermophysics, 9, 873-883, 1988.
    27. Lie, T. T., & Kodur, V. K. R. Thermal and mechanical properties of steel-fibre-reinforced concrete at elevated temperatures. Canadian Journal of Civil Engineering, 23(2), 511-517, 1996.
    28. Liu, Y., Du, P., Tan, K. H., Du, Y., Su, J., & Shi, C. Experimental and analytical studies on residual flexural behavior of reinforced alkali-activated slag-based concrete beams after exposure to fire. Engineering Structures, 298, 117035, 2024.
    29. Mander, J. B., Priestley, M. J., & Park, R. Theoretical stress-strain model for confined concrete. Journal of Structural Engineering, 114(8), 1804-1826, 1988.
    30. Peet, M. J., Hasan, H. S., & Bhadeshia, H. K. D. H. Prediction of thermal conductivity of steel. International Journal of Heat and Mass Transfer, 54(11-12), 2602-2608, 2011.
    31. Schneider, U. Concrete at high temperatures—a general review. Fire Safety Journal, 13(1), 55-68, 1988.
    32. Shin, K. Y., Kim, S. B., Kim, J. H., Chung, M., & Jung, P. S. Thermo-physical properties and transient heat transfer of concrete at elevated temperatures. Nuclear Engineering and Design, 212(1-3), 233-241, 2002.
    33. Tao, Z., Wang, X. Q., & Uy, B. Stress-strain curves of structural and reinforcing steels after exposure to elevated temperatures. Journal of Materials in Civil Engineering, 25(9), 1306-1316, 2013.
    34. TEASPA首頁. Ncree.org.tw. https://teaspa.ncree.org.tw/, 2021.
    35. Van Coile, R., Caspeele, R., & Taerwe, L. Towards a reliability-based post-fire assessment method for concrete slabs incorporating information from inspection. Structural Concrete, 15(3), 395-407, 2014.
    36. Zhang, W., Min, H., Gu, X., Xi, Y., & Xing, Y. Mesoscale model for thermal conductivity of concrete. Construction and Building Materials, 98, 8-16, 2015.
    37. 林峻立,「鋼筋混凝土柱火害後之耐震行為曲線研究」,國立成功大學土木工程研究所,臺南,2021。
    38. 王元武, 「不同受火方式後鋼筋混凝土柱抗震性能的試驗研究」,華倫大學, 碩士論文,2017 年。
    39. 臺灣結構耐震評估側推分析法 TEASPA 線上服務網頁使用手冊,2023。
    40. 霍靜思、楊鑫鑫、李智. (2019). “考慮初始荷載的火災後 RC 柱抗震性能。建築科學與工程學報”,36(5)。 Doi: 10.19815/j.jace.2019.05.003

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE