簡易檢索 / 詳目顯示

研究生: 温傳勝
Wen, Chuan-Sheng
論文名稱: 以有限元素法分析淺覆蓋及偏壓隧道開挖周邊位移與應力之研究
A Finite Element Analysis of the Displacements and Stresses Surrounding Tunnels under Shallow and Deviate Overburdens
指導教授: 王建力
Wang, Chein-Lee
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 130
中文關鍵詞: Abaqus隧道開挖開挖輪進淺覆蓋偏壓
外文關鍵詞: Abaqus, tunnel excavation, excavation wheeling, shallow overburden, deviate pressure
相關次數: 點閱:91下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討兩研究場址之隧道興建時,隧道整體周遭因岩體圍壓作用下產生之變位情形,而本研究場址白河水庫繞庫防淤隧道工程及阿里山森林鐵路42號隧道工程分別鄰近溪床及山坡側,在地質條件上較為破碎且不穩定,具有孔隙水壓力、土壤液化及偏壓作用下之危害淺勢。
    本研究以Abaqus有限元素數值模擬軟體,分析淺覆蓋隧道及偏壓隧道開挖後周邊位移與應力分佈情形,並比較不同案例下之隧道及岩體破壞情形,本研究成果可歸納如下:
    1. 隨著隧道開挖輪進次數的增加且縮短單一階段的開挖距離,會大幅度降低對岩體的擾動情形,提高整體隧道開挖與結構上之安全性及穩定度。
    2. 選擇適當強度的隧道支撐材料,對於隧道支撐及岩體皆能達到安全且穩定的效益。
    3. 在一邊坡區域進行隧道開挖時,於開挖選址上可盡量遠離山坡側,以降低隧道開挖時的擾動情形,若於隧道內有裝設避車洞之必要性,可選擇裝設於下邊坡側以提供支撐力來抵抗坡面滑動情形。

    In this study, we investigated the deformation of the tunnel structure due to the pressure of the rock surroundings during the construction of the tunnels at the two study sites. The Baihe Reservoir Dredging Tunnel Project and the Alishan Forest Railway No. 42 Tunnel Project are adjacent to the stream and the slope side, respectively.
    In this study, Abaqus finite element numerical simulation software was used to analyze the surrounding displacements and stresses distribution after excavation of shallow overburden tunnel and deviate tunnel, and compare the damage of tunnel and rock mass in different cases, the followings are the conclusions of this study:
    1. With the increase in the number of tunnel wheeling and the shortening of the excavation distance of a single stage, the disturbance to the rock mass will be greatly reduced and the overall safety and stability of the tunnel excavation and structure will be improved.
    2. Choosing the right strength of tunnel support material can achieve safe and stable benefits for both tunnel support and rock mass.
    3. When tunneling on a case of the slope, the excavation site can be located as far away from the side of the slope as possible to reduce the disturbance of the tunnel excavation, and if it’s needed to install a shelter in the tunnel, it can be installed on the lower side of the slope to provide support to resist sliding.

    摘要 I Extended Abstract II 誌謝 VIII 目錄 IX 表目錄 XV 圖目錄 XVIII 第一章 緒論 1 1.1 研究動機 1 1.2 研究目的 4 1.3 現場監測及試驗資料 5 1.4 研究架構 7 第二章 文獻回顧 8 2.1 防淤隧道 8 2.1.1 防淤隧道簡介 8 2.1.2 防淤隧道排砂方式 9 2.1.3 防淤隧道排砂原理 10 2.2 隧道工程演進 10 2.3 隧道開挖深度定義 15 2.4 隧道淺開挖方式 15 2.5 隧道開挖流程 16 2.5.1 管冪工法 16 2.5.2 開挖輪進程序 18 2.6 淺覆蓋隧道變形破壞機制 19 2.7 軟弱岩石 21 2.8 岩體分類法與隧道支撐理論 22 2.8.1 RMR岩體分類法 22 2.8.2 PCCR岩體分類系統 23 2.8.3 隧道支撐理論 24 2.9 軟岩隧道之地質災害問題 26 2.10 隧道變形監測技術 29 2.10.1 隧道變形寬容量 29 2.10.2 隧道監測方法 30 第三章 材料破壞準則 33 3.1 應力(Stress) 33 3.2 應變(Strain) 36 3.3 虎克定律(Hooke's Law) 38 3.4 Mohr's Circle 39 3.5 Mohr-Coulomb破壞準則 42 3.6 Von Mises屈服準則 44 3.7 隧道變形方程式 46 3.8 隧道開挖與地表沉陷 48 3.9 岩土工程數值分析法 50 第四章 Abaqus隧道開挖數值模擬分析 52 4.1 Abaqus有限元素數值模擬軟體 52 4.2 Abaqus數值模型組成條件 53 4.2.1 離散化的幾何體 53 4.2.2 材料性質 53 4.2.3 載重及邊界條件 54 4.2.4 分析類型 54 4.3 Abaqus/CAE數值模型建立 54 4.3.1 Sketch(草圖繪製) 55 4.3.2 Part(建立物件) 55 4.3.3 Mesh(建立網格) 56 4.3.4 Property(材料性質) 57 4.3.5 Assembly(物件組裝) 57 4.3.6 Step(步驟) 57 4.3.7 Interaction(交互作用) 58 4.3.8 Load(載重及邊界條件) 58 4.3.9 Job(執行分析) 59 4.3.10 Visualization(視覺化處理) 59 第五章 白河水庫繞庫防淤隧道工程分析 60 5.1 白河水庫繞庫防淤隧道工程模型建置流程 60 5.1.1 Part(建立物件) 60 5.1.2 Mesh(建立網格) 62 5.1.3 Property(材料性質) 65 5.1.4 Step(步驟) 70 5.1.5 Interaction(交互作用) 71 5.1.6 Load(載重及邊界條件) 72 5.2 白河水庫繞庫防淤隧道工程-隧道輪進次數分析結果 73 5.2.1 各區域水平(H)方向位移量 74 5.2.2 各區域垂直(V)方向位移量 75 5.2.3 初期支撐相對位移量 76 5.2.4 岩體Mohr-Coulomb應力分析 78 5.2.5 初期支撐Von Mises應力分析 82 5.3 白河水庫繞庫防淤隧道工程-初期支撐材料性質分析結果 83 5.3.1 初期支撐相對位移量 84 5.3.2 岩體Mohr-Coulomb應力分析 85 5.3.3 初期支撐Von Mises應力分析 89 第六章 阿里山森林鐵路42號隧道工程分析 91 6.1 阿里山森林鐵路42號隧道工程模型建置流程 91 6.1.1 Part(建立物件) 91 6.1.2 Mesh(建立網格) 93 6.1.3 Property(材料性質) 96 6.1.4 Step(步驟) 98 6.1.5 Interaction(交互作用) 99 6.1.6 Load(載重及邊界條件) 100 6.2 阿里山森林鐵路42號隧道工程-隧道開挖位置分析結果 101 6.2.1 各區域水平(H)方向位移量 102 6.2.2 各區域垂直(V)方向位移量 103 6.2.3 襯砌各方向相對位移量 104 6.2.4 岩體Mohr-Coulomb應力分析 106 6.2.5 襯砌Von Mises應力分析 110 6.3 阿里山森林鐵路42號隧道工程-隧道內避車洞分析結果 112 6.3.1 各區域水平(H)方向位移量 112 6.3.2 各區域垂直(V)方向位移量 114 6.3.3 岩體Mohr-Coulomb應力分析 116 6.3.4 襯砌Von Mises應力分析 120 第七章 結論與建議 122 7.1 結論 122 7.2 建議 124 參考文獻 125

    1. 士盟科技股份有限公司。Abaqus實務攻略入門必備。士盟科技股份有限公司,臺北,第1章,2-3,2020。
    2. 內政部營建署。混凝土結構設計規範。內政部營建署,臺灣,第1章,1-5,2002。
    3. 日本土木學會。隧道變狀機制(トンネルの変状メカニズム)。日本土木學會:朝倉俊弘主編,東京,2003。
    4. 中交公路規劃設計院。公路鋼筋混凝土及預應力混凝土橋涵設計規範。中交公路規劃設計院,中國,10-11,2004。
    5. 中興工程顧問。隧道工程施工技術解說圖冊。國道新建工程局,臺灣,2006。
    6. 王泰典、李佳翰、邱雅筑、陳正勳、黃燦輝。從我國岩石隧道檢修經驗探討營運期間結構行為演化及維護管理。土木水利,42(1),14-25,2015。
    7. 北迴鐵路施工處。北迴鐵路完工報告。榮民工程事業管理處,臺北,1980。
    8. 江俊宏。從台灣鐵路隧道工程的演進探討台北宜蘭直線鐵路規劃案。碩士論文,中華大學土木工程研究所,新竹,50-78,2005。
    9. 朱晃葵、黃貞凱、黃世偉。曾文水庫防淤隧道工程消能池及出水口隧道段設計及施工規劃。地工技術,43(2),24-33,2016。
    10. 李國鼎。組成律於砂質土側向伸張行為適用性之研究。碩士論文,中華大學土木工程研究所,新竹,34-44,1997。
    11. 汪世輝。管冪進洞工法於山谷地形淺覆蓋隧道中之應用與對策研究。博士論文,國立成功大學資源工程研究所,臺南,10-60,2010。
    12. 利德工程。白河水庫繞庫防淤工程-三向度量測歷時曲線圖。經濟部水利署南區水資源局,臺灣,2021。
    13. 利德工程、中興工程顧問社。阿里山森林鐵路42號隧道-施工抽坍評估報告。利德工程、中興工程顧問社,臺灣,2-32,2022。
    14. 周允文。隧道規劃設計、施工維護與營運防災考量。CECI 台灣世曦工程顧問公司,臺灣,60-80,2008。
    15. 林秉如、鄭名堯、趙譽恩。添加飛灰及加載對混凝土透水性質之影響。2010第十屆中華民國結構工程研討會,桃園:揚昇高爾夫鄉村俱樂部,79,1-3,2010。
    16. 施國欽。大地工程學(三)工程地質篇。文笙書局,臺北,第7章,2-8,2014。
    17. 陳堯中、吳俊傑、傅子仁。隧道變形量測及斷面收方之自動化技術。地工技術,65,43-52,1998。
    18. 張吉佐、侯秉承、李民政、李怡德、張博翔。台灣地區岩體分類與隧道支撐系統之建立。中興工程季刊,85,1-12,2004。
    19. 莊孟輝、潘煌鍟。隧道開挖爆炸之主動式預防-以曾文水庫越域引水工程計畫職災為例。Journal of Crisis Management, 12(2), 83-94, 2015。
    20. 許勝田。水庫設施更新與改善。土木水利,42(3),43-52,2015。
    21. 梁佳湘。隧道工程設計、施工實務。交通部公路總局-蘇花公路改善工程處、行政院公共工程委員會,臺灣,15-125,2021。
    22. 黃俊銘。隧道變形之動態行為分析。碩士論文,國立成功大學資源工程研究所,臺南,4-18,2001。
    23. 經濟部水利署北區水資源局。阿姆坪防淤隧道淤砂清運模式可行性評估成果報告。經濟部水利署北區水資源局,臺灣,23-26,2014。
    24. 經濟部水利署北區水資源局。石門水庫阿姆坪防淤隧道可行性規劃總報告。經濟部水利署北區水資源局,臺灣,第6章,12-31,2015。
    25. 經濟部水利署。白河水庫繞庫防淤工程-施工補充地質調查報告。經濟部水利署,臺灣,1-26,2020。
    26. 蔡美峰。岩石力學與工程。科學出版社,北京,27-29,2002。
    27. 蕭富元、冀樹勇、邵厚潔、林廷彥、汪世輝。臺灣東部硬岩破壞特性與地下開挖穩定問題。地工技術,131,71-80,2012。
    28. Barla, G., Forlati, F., and Zaninetti, A. Laboratory tests on rocks: issues and examples. MIR 90, Torino, 4(1), 4–47, 1990.
    29. Bieniawski, Z. T. Engineering classification of jointed rock masses. The civil engineer in South Africa, 15(12), 343-353, 1973.
    30. Bieniawski, Z. T. Rock mechanics design in mining and tunneling. Balkema, Boston, 1984.
    31. Das, B. M. Advanced soil mechanics (5th edition). Taylor & Francis, 65-90, 2019.
    32. Dassault Systèmes Simulia. Abaqus analysis user's guide, Element library: overview. Retrieved from Dassault Systèmes Simulia corporation, Section 27.1.1, 2016. (http://62.108.178.35:2080/v2016/books/usb/default.htm?startat=pt04ch12s03aus86.html)
    33. Gaudin, B., Folacci, J. P., Panet, M., and Salva, L. Soutènement d’une galerie dans les marnes du cenomanien. August Aimé Balkema, Stockholm, 1, 293-296, 1981.
    34. Gere, M. J. Mechanics of materials (6th edition). Thomson Learning, 912-914, 2004.
    35. Glossop, N. H. Soil deformation caused by soft ground tunnelling. Ph.D. thesis, University of Durham, 1978.
    36. Goodman, R. E. Introduction to rock mechanics (2nd edition). John Wiley & Sons, 80-82, 1989.
    37. He, M. Concept, classification and supporting measures of soft rock. Coal Science Technology Fengmei, 2, 7–10, 1992.
    38. He, M., Jing, H., and Sun, X. Soft rock engineering mechanics. Science Press, Beijing, 2002.
    39. He, M. Progress and challenges of soft rock engineering in depth. Journal of China Coal Society, 39(8), 1409–1417, 2014.
    40. ISRM. Rock characterization testing and monitoring. International Society for Rock Mechanics, Pergamon Press, New York, 211, 1981.
    41. Jing, L. A review of techniques, advances and outstanding issues in numerical modelling for rock mechanics and rock engineering. International Journal of Rock Mechanics & Mining Sciences, 40, 283–353, 2002.
    42. Li, W., and Wang, J. Study on deformation and failure mechanism and reasonable support of soft rock roadway. Journal of China Coal Society, 3, 55-62, 1987.
    43. O'Reilly, M. P., and New, B. M. Settlements above tunnels in the United Kingdom, their magnitude and prediction, Brighton, Tunnelling 82, 173-181, 1982.
    44. Panet, M. Time-dependent deformations in underground works. ISRM, Proc. 4th Congress, Montreux, 3, 279-290, 1979.
    45. Panet, M., and Gucnot, A. Analysis of convergence behind the face of a tunnel, Tunnelling 82, Brighton, 197-204, 1982.
    46. Peck, R. B. Deep excavation and tunneling in soft ground. State-of-the-art report, Proceedings of the 7th International Conference on Soil Mechanics and Foundation Engineering, Mexico, 225-290, 1969.
    47. Peng, S., and Zhang, J. Engineering geology for underground rocks. Springer, Berlin, Heidelberg, New York, 301-303, 2007.
    48. Russo, G. Some considerations on the applicability of major geomechanical classifications to weak and complex rocks in tunnelling. Journal of GEAM, 31, 63–70, 1994.
    49. Schmidt, B. Settlements and ground movements associated with tunneling in soil. Ph.D. thesis, University of Illinois, 1969.
    50. Sulem, J., Panet, M., and Guenot, A. Closure analysis in deep tunnels. International Journal of Rock Mechanics and Mining Science & Geomechanics Abstracts, 24(3), 145-154, 1987.
    51. Terzaghi, K., Peck, R. B., and Mesri, G. Soil mechanics in engineering practice (3th edition). John Wiley & Sons, 349-350, 1967.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE