| 研究生: |
蔡智銘 Tsai, Chih-Ming |
|---|---|
| 論文名稱: |
營養獲取與微生物交互作用影響下棘阿米巴原蟲致病性狀之多體學特徵 The Multi-Omics Signatures of Acanthamoeba Pathogenic Traits under the Impact of Nutrient Acquisition and Microbial Interaction |
| 指導教授: |
林威辰
Lin, Wei-Chen |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
醫學院 - 基礎醫學研究所 Institute of Basic Medical Sciences |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 英文 |
| 論文頁數: | 108 |
| 中文關鍵詞: | 棘阿米巴 、微生物交互作用 、多體學 、共培養 |
| 外文關鍵詞: | Acanthamoeba, microbial interaction, multi-omics, co-incubation |
| 相關次數: | 點閱:43 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
棘阿米巴原蟲(Acanthamoeba castellanii)有伺機感染人類角膜的致病能力,在感染後宿主可能出現嚴重的角膜炎症狀,甚至需要進行眼球摘除手術。棘阿米巴原蟲角膜炎的流行率低,但過去研究發現人類經常暴露於與棘阿米巴原蟲接觸的風險,且目前對於棘阿米巴原蟲的致病機制尚有許多未知。棘阿米巴原蟲是自由營生的原生生物,廣泛存在於各類土壤及水體環境中,以多樣的微生物為食。近來研究發現,部分棘阿米巴致病因子與其捕食微生物的機制類似,棘阿米巴表面受器辨識宿主或獵物後,啟動下游吞噬作用反應。實驗室中所使用的棘阿米巴蟲株可能因長期以液態培養基培養,造成辨識固態食物來源或吞噬作用的弱化,進而導致致病機制難以釐清。本研究中,我們重新馴化棘阿米巴原蟲,使其可以在低營養培養基中以細菌為食,並發現其毒性相關表現增強。透過代謝體和基因體學技術,我們比較兩者後發現棘阿米巴在改以細菌為食後,四種胺基酸的代謝途徑被調控,包含支鏈胺基酸的分解與生合成;此外,胞吞作用、吞噬體、和自噬作用途徑中大部分基因表現量上調,這些途徑影響了棘阿米巴原蟲適應低營養環境和捕食能力。除了棘阿米巴本身的變化之外,原蟲也會造成周邊細菌的表現型變化,進而影響其毒性,並間接影響宿主健康。在與施氏假性單胞菌的共培養實驗中,發現棘阿米巴原蟲會造成其移動能力下降,而以細菌為食的棘阿米巴則可造成此細菌表現型變化更為穩定。本研究提供了棘阿米巴共培養與感染模型的新方向,並增進對棘阿米巴毒性更深入的了解。
Acanthamoeba castellanii, a free-living protozoan, possesses opportunistic pathogenicity for human corneas, potentially inducing severe keratitis symptoms and even necessitating enucleation surgery following infection. While the prevalence of Acanthamoeba keratitis is low, studies have shown frequent human exposure to Acanthamoeba, highlighting the need for a deeper understanding of its pathogenic mechanisms. In this study, we reconditioned A. castellanii to thrive in a low-nutrient culture medium and feed on heat-killed bacteria. Interestingly, this adaptation led to an enhancement of its virulence-related gene expressions. Through metabolomic and genomic analyses, we observed regulatory changes in four amino acid metabolic pathways, including the degradation and biosynthesis of branched-chain amino acids. Additionally, genes associated with phagocytosis, phagosomes, and autophagy pathways were predominantly upregulated, influencing Acanthamoeba's adaptation to low-nutrient environments and its predatory capabilities. Beyond the changes in Acanthamoeba itself, the protozoan induces phenotypic alterations in surrounding bacteria, impacting their virulence and indirectly affecting host health. Our co-incubation experiments with Pseudomonas stutzeri revealed that A. castellanii caused a reduction in bacterial motility, and amoebae preying on bacteria-induced more stable phenotypic changes in the bacteria. Based on our findings, we concluded that the virulence of A. castellanii and protozoan-bacterial interaction were largely affected by the composition of the co-culture environments. Additionally, this study introduces novel directions for A. castellanii co-culturing and infection models, advancing our understanding of A. castellanii virulence.
1. Shi, Y., et al., The Ecology and Evolution of Amoeba-Bacterium Interactions. Appl Environ Microbiol, 2021. 87(2).
2. Damhorst, G.L., et al., Acanthamoeba castellanii encephalitis in a patient with AIDS: a case report and literature review. Lancet Infect Dis, 2022. 22(2): p. e59-e65.
3. List, W., et al., Evaluation of Acanthamoeba keratitis cases in a tertiary medical care centre over 21 years. Sci Rep, 2021. 11(1): p. 1036.
4. Mascarenhas, J., et al., Acanthamoeba, fungal, and bacterial keratitis: a comparison of risk factors and clinical features. Am J Ophthalmol, 2014. 157(1): p. 56-62.
5. Clarke, M., et al., Genome of Acanthamoeba castellanii highlights extensive lateral gene transfer and early evolution of tyrosine kinase signaling. Genome Biol, 2013. 14(2): p. R11.
6. Visvesvara, G.S., H. Moura, and F.L. Schuster, Pathogenic and opportunistic free-living amoebae: Acanthamoeba spp., Balamuthia mandrillaris, Naegleria fowleri, and Sappinia diploidea. FEMS Immunol Med Microbiol, 2007. 50(1): p. 1-26.
7. Denet, E., et al., Diversity of free-living amoebae in soils and their associated human opportunistic bacteria. Parasitol Res, 2017. 116(11): p. 3151-3162.
8. Marciano-Cabral, F. and G. Cabral, Acanthamoeba spp. as agents of disease in humans. Clin Microbiol Rev, 2003. 16(2): p. 273-307.
9. Lorenzo-Morales, J., et al., Therapeutic potential of a combination of two gene-specific small interfering RNAs against clinical strains of Acanthamoeba. Antimicrob Agents Chemother, 2010. 54(12): p. 5151-5.
10. Muchesa, P., et al., Detection of free-living amoebae using amoebal enrichment in a wastewater treatment plant of Gauteng Province, South Africa. Biomed Res Int, 2014. 2014: p. 575297.
11. Siddiqui, R. and N.A. Khan, Biology and pathogenesis of Acanthamoeba. Parasites & vectors, 2012. 5(1).
12. Siddiqui, R., R. Dudley, and N.A. Khan, Acanthamoeba differentiation: a two-faced drama of Dr Jekyll and Mr Hyde. Parasitology, 2012. 139(7): p. 826-34.
13. Costa, A.O., et al., Characterization of acanthamoeba isolates from dust of a public hospital in Curitiba, Parana, Brazil. J Eukaryot Microbiol, 2010. 57(1): p. 70-5.
14. Sriram, R., et al., Survival of Acanthamoeba cysts after desiccation for more than 20 years. J Clin Microbiol, 2008. 46(12): p. 4045-8.
15. Walochnik, J., U. Scheikl, and E.M. Haller-Schober, Twenty years of acanthamoeba diagnostics in Austria. J Eukaryot Microbiol, 2015. 62(1): p. 3-11.
16. Panjwani, N., Pathogenesis of Acanthamoeba keratitis. The ocular surface, 2010. 8(2): p. 70-79.
17. Imbert-Bouyer, S., et al., A mannose binding protein is involved in the adherence of Acanthamoeba species to inert surfaces. FEMS Microbiol Lett, 2004. 238(1): p. 207-11.
18. Garate, M., et al., In vitro pathogenicity of Acanthamoeba is associated with the expression of the mannose-binding protein. Invest Ophthalmol Vis Sci, 2006. 47(3): p. 1056-62.
19. Garate, M., et al., Biochemical characterization and functional studies of Acanthamoeba mannose-binding protein. Infect Immun, 2005. 73(9): p. 5775-81.
20. Clarke, D.W. and J.Y. Niederkorn, The pathophysiology of Acanthamoeba keratitis. Trends Parasitol, 2006. 22(4): p. 175-80.
21. Yoo, K.T. and S.Y. Jung, Effects of mannose on pathogenesis of Acanthamoeba castellanii. Korean J Parasitol, 2012. 50(4): p. 365-9.
22. Hurt, M., J. Niederkorn, and H. Alizadeh, Effects of mannose on Acanthamoeba castellanii proliferation and cytolytic ability to corneal epithelial cells. Invest Ophthalmol Vis Sci, 2003. 44(8): p. 3424-31.
23. Lorenzo-Morales, J., et al., Acanthamoeba keratitis: an emerging disease gathering importance worldwide? Trends Parasitol, 2013. 29(4): p. 181-7.
24. Inderjit Deol, et al., Encephalitis Due to a Free-Living Amoeba (Balamuthia mandrillaris): Case Report with Literature Review. Surgical neurology, 2000. 53(6): p. 611-616.
25. Leher, H.F., et al., Role of mucosal IgA in the resistance to Acanthamoeba keratitis. Invest Ophthalmol Vis Sci, 1998. 39(13): p. 2666-73.
26. Leher, H., et al., Impact of oral immunization with Acanthamoeba antigens on parasite adhesion and corneal infection. Invest Ophthalmol Vis Sci, 1998. 39(12): p. 2337-43.
27. Niederkorn, J.Y., The biology of Acanthamoeba keratitis. Exp Eye Res, 2021. 202: p. 108365.
28. Alizadeh, H., et al., Tear IgA and serum IgG antibodies against Acanthamoeba in patients with Acanthamoeba keratitis. Cornea, 2001. 20(6): p. 622-7.
29. Brown, T., R. Cursons, and E. Keys, Amoebae from antarctic soil and water. Applied and Environmental Microbiology, 1982. 44(2): p. 491-493.
30. Broxton, P., P. Woodcock, and P. Gilbert, A study of the antibacterial activity of some polyhexamethylene biguanides towards Escherichia coli ATCC 8739. Journal of Applied Bacteriology, 1983. 54(3): p. 345-353.
31. Auran, J.D., M.B. Starr, and F.A. Jakobiec, Acanthamoeba keratitis. Cornea, 1987. 6(1): p. 2-26.
32. Allen, M.J., A.P. Morby, and G.F. White, Cooperativity in the binding of the cationic biocide polyhexamethylene biguanide to nucleic acids. Biochemical and biophysical research communications, 2004. 318(2): p. 397-404.
33. Li, M.-L., et al., Treatment of early Acanthamoeba keratitis with alcohol-assisted epithelial debridement. Cornea, 2012. 31(4): p. 442-446.
34. Centers for Disease, C., Acanthamoeba keratitis in soft-contact-lens wearers. MMWR Morb Mortal Wkly Rep, 1987. 36(25): p. 397-8, 403-4.
35. Diesend, J., et al., Amoebae, giant viruses, and virophages make up a complex, multilayered threesome. Frontiers in cellular and infection microbiology, 2018. 7: p. 527.
36. Gomes, T.S., et al., Presence and interaction of free-living amoebae and amoeba-resisting bacteria in water from drinking water treatment plants. Science of The Total Environment, 2020. 719: p. 137080.
37. Brussow, H., Bacteria between protists and phages: from antipredation strategies to the evolution of pathogenicity. Mol Microbiol, 2007. 65(3): p. 583-9.
38. Kreuzer, K., et al., Grazing of a common species of soil protozoa (Acanthamoeba castellanii) affects rhizosphere bacterial community composition and root architecture of rice (Oryza sativa L.). Soil Biology and Biochemistry, 2006. 38(7): p. 1665-1672.
39. Karaś, M.A., et al., Growth and survival of Mesorhizobium loti inside Acanthamoeba enhanced its ability to develop more nodules on Lotus corniculatus. Microbial ecology, 2015. 70(2): p. 566-575.
40. Rosenberg, K., et al., Soil amoebae rapidly change bacterial community composition in the rhizosphere of Arabidopsis thaliana. ISME J, 2009. 3(6): p. 675-84.
41. Rodríguez-Zaragoza, S., Ecology of free-living amoebae. Critical reviews in microbiology, 1994. 20(3): p. 225-241.
42. Zhang, J., et al., Top‐down effects of a lytic bacteriophage and protozoa on bacteria in aqueous and biofilm phases. Ecology and evolution, 2014. 4(23): p. 4444-4453.
43. Kao, P.-M., et al., Diversity and seasonal impact of Acanthamoeba species in a subtropical rivershed. BioMed research international, 2013. 2013.
44. De Jonckheere, J.F., Ecology of acanthamoeba. Reviews of infectious diseases, 1991. 13(Supplement_5): p. S385-S387.
45. Rayamajhee, B., et al., A Systematic Review of Intracellular Microorganisms within Acanthamoeba to Understand Potential Impact for Infection. Pathogens, 2021. 10(2).
46. Proca-Ciobanu, M., et al., Electron microscopic study of a pathogenic Acanthamoeba castellani strain: the presence of bacterial endosymbionts. Int J Parasitol, 1975. 5(1): p. 49-56.
47. Rayamajhee, B., et al., Acanthamoeba, an environmental phagocyte enhancing survival and transmission of human pathogens. Trends Parasitol, 2022. 38(11): p. 975-990.
48. Molmeret, M., et al., Amoebae as training grounds for intracellular bacterial pathogens. Appl. Environ. Microbiol., 2005. 71(1): p. 20-28.
49. Guimaraes, A.J., et al., Acanthamoeba spp. as a universal host for pathogenic microorganisms: One bridge from environment to host virulence. Microbiological research, 2016. 193: p. 30-38.
50. Kuburich, N.A., N. Adhikari, and J.A. Hadwiger, Acanthamoeba and Dictyostelium Use Different Foraging Strategies. Protist, 2016. 167(6): p. 511-525.
51. de Schaetzen, F., et al., Random encounters and amoeba locomotion drive the predation of Listeria monocytogenes by Acanthamoeba castellanii. Proc Natl Acad Sci U S A, 2022. 119(32): p. e2122659119.
52. Matz, C., et al., Acquired type III secretion system determines environmental fitness of epidemic Vibrio parahaemolyticus in the interaction with bacterivorous protists. PLoS One, 2011. 6(5): p. e20275.
53. Declerck, P., et al., Receptor‐mediated uptake of Legionella pneumophila by Acanthamoeba castellanii and Naegleria lovaniensis. Journal of applied microbiology, 2007. 103(6): p. 2697-2703.
54. Feld, G.K., et al., Structure and function of REP34 implicates carboxypeptidase activity in Francisella tularensis host cell invasion. J Biol Chem, 2014. 289(44): p. 30668-30679.
55. Hayashi, Y., et al., A domino-like chlamydial attachment process: concurrent Parachlamydia acanthamoebae attachment to amoebae is required for several amoebal released molecules and serine protease activity. Microbiology (Reading), 2012. 158(Pt 6): p. 1607-1614.
56. Goncalves, D.S., et al., Unravelling the interactions of the environmental host Acanthamoeba castellanii with fungi through the recognition by mannose-binding proteins. Cell Microbiol, 2019. 21(10): p. e13066.
57. Michalek, M., et al., Structure and function of a unique pore-forming protein from a pathogenic acanthamoeba. Nat Chem Biol, 2013. 9(1): p. 37-42.
58. Lin, W.C., et al., Quantitative proteomic analysis and functional characterization of Acanthamoeba castellanii exosome-like vesicles. Parasit Vectors, 2019. 12(1): p. 467.
59. Huang, J.M., Y.T. Chang, and W.C. Lin, The Biochemical and Functional Characterization of M28 Aminopeptidase Protein Secreted by Acanthamoeba spp. on Host Cell Interaction. Molecules, 2019. 24(24).
60. Casadevall, A., et al., The ‘amoeboid predator-fungal animal virulence’hypothesis. Journal of Fungi, 2019. 5(1): p. 10.
61. Abd, H., et al., Survival and growth of Francisella tularensis in Acanthamoeba castellanii. Appl Environ Microbiol, 2003. 69(1): p. 600-6.
62. Michard, C., et al., The Legionella Kinase LegK2 Targets the ARP2/3 Complex To Inhibit Actin Nucleation on Phagosomes and Allow Bacterial Evasion of the Late Endocytic Pathway. mBio, 2015. 6(3): p. e00354-15.
63. Personnic, N., et al., Quorum sensing modulates the formation of virulent Legionella persisters within infected cells. Nat Commun, 2019. 10(1): p. 5216.
64. Gomes, T.S., et al., The Influence of Acanthamoeba-Legionella Interaction in the Virulence of Two Different Legionella Species. Front Microbiol, 2018. 9: p. 2962.
65. Konig, L., et al., Biphasic Metabolism and Host Interaction of a Chlamydial Symbiont. mSystems, 2017. 2(3).
66. Shteindel, N. and Y. Gerchman, Pseudomonas aeruginosa Mobbing-Like Behavior against Acanthamoeba castellanii Bacterivore and Its Rapid Control by Quorum Sensing and Environmental Cues. Microbiol Spectr, 2021. 9(3): p. e0064221.
67. Hoque, M.M., et al., Adaptation to an amoeba host drives selection of virulence-associated traits in Vibrio cholerae. ISME J, 2022. 16(3): p. 856-867.
68. Cirillo, J.D., et al., Interaction of Mycobacterium avium with environmental amoebae enhances virulence. Infect Immun, 1997. 65(9): p. 3759-67.
69. Leong, W., et al., Adaptation to an Amoeba Host Leads to Pseudomonas aeruginosa Isolates with Attenuated Virulence. Appl Environ Microbiol, 2022. 88(5): p. e0232221.
70. Wang, Y.J., et al., Intracellular Microbiome Profiling of the Acanthamoeba Clinical Isolates from Lens Associated Keratitis. Pathogens, 2021. 10(3).
71. Cateau, E., et al., Acanthamoeba sp. promotes the survival and growth of Acinetobacter baumanii. FEMS Microbiol Lett, 2011. 319(1): p. 19-25.
72. Pagnier, I., D. Raoult, and B. La Scola, Isolation and identification of amoeba-resisting bacteria from water in human environment by using an Acanthamoeba polyphaga co-culture procedure. Environ Microbiol, 2008. 10(5): p. 1135-44.
73. Dey, R., P.S. Hoffman, and I.J. Glomski, Germination and amplification of anthrax spores by soil-dwelling amoebas. Appl Environ Microbiol, 2012. 78(22): p. 8075-81.
74. Phillips, I.L., et al., Acanthamoeba castellanii as a Screening Tool for Mycobacterium avium Subspecies paratuberculosis Virulence Factors with Relevance in Macrophage Infection. Microorganisms, 2020. 8(10).
75. Hojo, F., et al., Acanthamoeba castellanii supports extracellular survival of Helicobacter pylori in co-culture. J Infect Chemother, 2020. 26(9): p. 946-954.
76. Zheng, R., S. Wu, and C. Sun, MerF is a novel regulator of deep‐sea Pseudomonas stutzeri flagellum biogenesis and motility. Environmental Microbiology, 2020.
77. Silva, L.C.F., et al., Physicochemical characterization of Pseudomonas stutzeri UFV5 and analysis of its transcriptome under heterotrophic nitrification/aerobic denitrification pathway induction condition. Scientific reports, 2020. 10(1): p. 1-13.
78. Sorokin, D.Y., et al., Anaerobic oxidation of thiosulfate to tetrathionate by obligately heterotrophic bacteria, belonging to the Pseudomonas stutzeri group. FEMS microbiology ecology, 1999. 30(2): p. 113-123.
79. Lalucat, J., et al., Biology of Pseudomonas stutzeri. Microbiology and Molecular Biology Reviews, 2006. 70(2): p. 510-547.
80. Lu, C., et al., Chlorpyrifos inhibits nitrogen fixation ain rice-vegetated soil containing Pseudomonas stutzeri A1501. Chemosphere, 2020: p. 127098.
81. Lami, M.J., et al., Pseudomonas stutzeri MJL19, a rhizosphere‐colonizing bacterium that promotes plant growth under saline stress. Journal of Applied Microbiology, 2020.
82. Scotta, C., et al., Identification and genomovar assignation of clinical strains of Pseudomonas stutzeri. European journal of clinical microbiology & infectious diseases, 2012. 31(9): p. 2133-2139.
83. García-Valdés, E., M. Mulet, and J. Lalucat, Insights into the life styles of Pseudomonas stutzeri, in Pseudomonas. 2010, Springer. p. 177-198.
84. Zheng, R., et al., Genetic and physiological adaptations of marine bacterium Pseudomonas stutzeri 273 to mercury stress. Frontiers in microbiology, 2018. 9: p. 682.
85. Arnold, J.W., D. Spacht, and G.B. Koudelka, Determinants that govern the recognition and uptake of Escherichia coli O157 : H7 by Acanthamoeba castellanii. Cell Microbiol, 2016. 18(10): p. 1459-70.
86. Cervero-Arago, S., et al., Viability and infectivity of viable but nonculturable Legionella pneumophila strains induced at high temperatures. Water Res, 2019. 158: p. 268-279.
87. Bloomfield, G. and R.R. Kay, Uses and abuses of macropinocytosis. J Cell Sci, 2016. 129(14): p. 2697-2705.
88. Huang, F.C., et al., Characterizing clinical isolates of Acanthamoeba castellanii with high resistance to polyhexamethylene biguanide in Taiwan. J Microbiol Immunol Infect, 2017. 50(5): p. 570-577.
89. Newsome, A.L., et al., Isolation of an amoeba naturally harboring a distinctive Legionella species. Appl Environ Microbiol, 1998. 64(5): p. 1688-93.
90. Xuan, Y., et al., Isolation and identification of Acanthamoeba strains from soil and tap water in Yanji, China. Environ Health Prev Med, 2017. 22(1): p. 58.
91. Mazur, T. and E. Hadas, The effect of the passages of Acanthamoeba strains through mice tissues on their virulence and its biochemical markers. Parasitol Res, 1994. 80(5): p. 431-4.
92. Hughes, R., W. Heaselgrave, and S. Kilvington, Acanthamoeba polyphaga strain age and method of cyst production influence the observed efficacy of therapeutic agents and contact lens disinfectants. Antimicrob Agents Chemother, 2003. 47(10): p. 3080-4.
93. Kohsler, M., et al., Acanthamoeba strains lose their abilities to encyst synchronously upon prolonged axenic culture. Parasitol Res, 2008. 102(5): p. 1069-72.
94. Koehsler, M., et al., Acanthamoeba castellanii : growth on human cell layers reactivates attenuated properties after prolonged axenic culture. FEMS Microbiol Lett, 2009. 299(2): p. 121-7.
95. Bernard, C., et al., A time-resolved multi-omics atlas of Acanthamoeba castellanii encystment. Nat Commun, 2022. 13(1): p. 4104.
96. Tomita, R., et al., Discrimination of Malignant Pleural Mesothelioma Cell Lines Using Amino Acid Metabolomics with HPLC. Biol Pharm Bull, 2022. 45(6): p. 724-729.
97. Inoki, K. and K.L. Guan, Rag GTPases regulate cellular amino acid homeostasis. Proc Natl Acad Sci U S A, 2022. 119(8).
98. Bandyopadhyay, U., et al., Leucine retention in lysosomes is regulated by starvation. Proc Natl Acad Sci U S A, 2022. 119(6).
99. Christiansen, C., et al., In vitro maturation of Toxoplasma gondii bradyzoites in human myotubes and their metabolomic characterization. Nat Commun, 2022. 13(1): p. 1168.
100. Tsai, K.W., et al., Evaluation and application of the strand-specific protocol for next-generation sequencing. Biomed Res Int, 2015. 2015: p. 182389.
101. Xia, J. and D.S. Wishart, Web-based inference of biological patterns, functions and pathways from metabolomic data using MetaboAnalyst. Nat Protoc, 2011. 6(6): p. 743-60.
102. Luo, W., et al., Pathview Web: user friendly pathway visualization and data integration. Nucleic Acids Res, 2017. 45(W1): p. W501-W508.
103. Luo, W. and C. Brouwer, Pathview: an R/Bioconductor package for pathway-based data integration and visualization. Bioinformatics, 2013. 29(14): p. 1830-1.
104. Luo, W., et al., GAGE: generally applicable gene set enrichment for pathway analysis. BMC Bioinformatics, 2009. 10: p. 161.
105. Bennasar, A., C. Guasp, and J. Lalucat, Molecular Methods for the Detection and Identification of Pseudomonas stutzeri in Pure Culture and Environmental Samples. Microb Ecol, 1998. 35(1): p. 22-33.
106. Scotta, C., et al., Identification and genomovar assignation of clinical strains of Pseudomonas stutzeri. Eur J Clin Microbiol Infect Dis, 2012. 31(9): p. 2133-9.
107. Wang, Y.J., et al., Commensals Serve as Natural Barriers to Mammalian Cells during Acanthamoeba castellanii Invasion. Microbiol Spectr, 2021. 9(3): p. e0051221.
108. Neshich, I.A., E. Kiyota, and P. Arruda, Genome-wide analysis of lysine catabolism in bacteria reveals new connections with osmotic stress resistance. ISME J, 2013. 7(12): p. 2400-10.
109. Lam, H., et al., D-amino acids govern stationary phase cell wall remodeling in bacteria. Science, 2009. 325(5947): p. 1552-5.
110. Hochstrasser, R., et al., Migration of Acanthamoeba through Legionella biofilms is regulated by the bacterial Lqs-LvbR network, effector proteins and the flagellum. Environ Microbiol, 2022. 24(8): p. 3672-3692.
111. Van der Henst, C., et al., Molecular insights into Vibrio cholerae’s intra-amoebal host-pathogen interactions. Nature communications, 2018. 9(1): p. 3460.
112. De Moraes, J. and S.C. Alfieri, Growth, encystment and survival of Acanthamoeba castellanii grazing on different bacteria. FEMS microbiology ecology, 2008. 66(2): p. 221-229.
113. Price, C., et al., Paradoxical Pro-inflammatory Responses by Human Macrophages to an Amoebae Host-Adapted Legionella Effector. Cell Host & Microbe, 2020.
114. Tsai, C.M., J.W. Chen, and W.C. Lin, Effects of Acanthamoeba castellanii on the dissolved oxygen and the microbial community under the experimental aquatic model. Exp Parasitol, 2020. 218: p. 107985.
115. Pickup, Z.L., R. Pickup, and J.D. Parry, Growth of Acanthamoeba castellanii and Hartmannella vermiformis on live, heat-killed and DTAF-stained bacterial prey. FEMS Microbiol Ecol, 2007. 61(2): p. 264-72.
116. Payne, S.H. and W.F. Loomis, Retention and loss of amino acid biosynthetic pathways based on analysis of whole-genome sequences. Eukaryot Cell, 2006. 5(2): p. 272-6.
117. Abid, M., et al., Comparative transcriptome and metabolome analysis reveal key regulatory defense networks and genes involved in enhanced salt tolerance of Actinidia (kiwifruit). Hortic Res, 2022. 9: p. uhac189.
118. Ahmad, H., et al., Benincasa hispida extracts positively regulated high salt-induced hypertension in Dahl salt-sensitive rats: Impact on biochemical profile and metabolic patterns. J Food Biochem, 2022: p. e14497.
119. Xiong, J. and M.X. Zhu, Regulation of lysosomal ion homeostasis by channels and transporters. Sci China Life Sci, 2016. 59(8): p. 777-91.
120. Feng, X., et al., Drosophila TRPML forms PI(3,5)P2-activated cation channels in both endolysosomes and plasma membrane. J Biol Chem, 2014. 289(7): p. 4262-72.
121. Mackenzie, B. and J.D. Erickson, Sodium-coupled neutral amino acid (System N/A) transporters of the SLC38 gene family. Pflugers Arch, 2004. 447(5): p. 784-95.
122. Cao, C. and W.X. Wang, Copper-induced metabolic variation of oysters overwhelmed by salinity effects. Chemosphere, 2017. 174: p. 331-341.
123. Veal, E.A., et al., Distinct roles for glutathione S-transferases in the oxidative stress response in Schizosaccharomyces pombe. J Biol Chem, 2002. 277(38): p. 35523-31.
124. Gratao, P.L., et al., Making the life of heavy metal-stressed plants a little easier. Funct Plant Biol, 2005. 32(6): p. 481-494.
125. Allocati, N., et al., Glutathione transferases in bacteria. FEBS J, 2009. 276(1): p. 58-75.
校內:2029-02-26公開