| 研究生: |
鄭宇哲 Cheng, Yu-Che |
|---|---|
| 論文名稱: |
快速微流體檢測裝置應用於尿液中的大腸桿菌細胞毒性因子(CNF1)之檢測 Rapid microfluidic detection device for detection of Escherichia coli cytotoxic necrotizing factor 1 (CNF1) in urine |
| 指導教授: |
傅龍明
Fu, Lung-Ming |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 91 |
| 中文關鍵詞: | CNF1 、微流體晶片 、ELISA 、免疫感測器 |
| 外文關鍵詞: | CNF1, Enzyme-Linked Immunosorbent Assay, Immunosensor, Microfluidic chip |
| 相關次數: | 點閱:9 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
泌尿道感染(Urinary Tract Infections, UTIs)是全球常見的感染性疾病之一,每年影響超過 1.5 億人,其中約半數女性在一生中至少經歷一次感染。傳統 UTIs診斷多依賴細菌培養,不僅耗時超過三天,還需專業儀器與技術,導致無法即時提供診斷與治療,易延誤病情控制。
導致 UTIs 的主要病原為泌尿道致病性大腸桿菌(Uropathogenic Escherichia coli, UPEC),其致病能力主要來自多種毒性因子的協同作用。其中,細胞壞死毒素 1(Cytotoxic Necrotizing Factor 1, CNF1)是 UPEC 的重要毒力蛋白,能透過活化宿主細胞的 Rho GTPase,誘導細胞骨架重組、影響細胞訊息傳遞並促進細胞壞死與發炎反應。研究指出, CNF1 與膀胱炎、腎盂腎炎等臨床症狀高度相關,亦與感染嚴重程度及復發率有顯著關聯。因此,針對 CNF1 進行早期檢測,有助於辨識具高致病性之菌株,提升臨床診斷的精準性。
本研究結合微流體技術與即時檢測系統,開發一款用於檢測尿液中 CNF1 毒素之晶片式檢測裝置。使用者僅需添加少量樣品至微流體晶片中,即可進行ELISA 免疫分析,反應完成後搭配機台中的微型光譜儀進行分析,即可得知尿液內是否具有大腸桿菌細胞壞死毒素 1。為確認本研究之可行性,此晶片透過不同濃度下大腸桿菌之 CNF1 進行測試,實驗結果與實際濃度的相關係數為 0.9972,且在 35 例人工尿液盲測中,獲得 98.33%的平均回收率,得知該系統可準確辨識UPEC 所產生之 CNF1 毒素,有助於早期發現感染風險、提升診療效率與治療精準性。
本研究建立之微流體檢測平台,提供準確且低耗材的新型 UTIs 檢測工具,未來可應用於居家健康監測、遠距診療及臨床輔助診斷,對泌尿道感染之預防與治療具有重要實用價值。
Urinary tract infections (UTIs) are among the most common infections globally, affecting over 150 million people each year. Nearly half of all women experience at least one UTI in their lifetime. Traditional diagnostic methods rely on bacterial culture, which is time-consuming and requires specialized equipment, delaying treatment and worsening clinical outcomes. Uropathogenic Escherichia coli (UPEC) is the main pathogen responsible for UTIs, with Cytotoxic Necrotizing Factor 1 (CNF1) being a key virulence factor. CNF1 promotes infection by activating host Rho GTPases, causing cytoskeletal changes, cellular disruption, and inflammation. It is closely linked to severe UTI symptoms and recurrence. Early detection of CNF1 can improve diagnosis by identifying highly virulent UPEC strains.
In this study, we developed a microfluidic diagnostic platform for real-time detection of CNF1 in urine. The system uses a microfluidic chip and enzyme-linked immunosorbent assay (ELISA), followed by signal analysis via a miniaturized spectrometer. Testing with various CNF1 concentrations showed a strong correlation (R² = 0.9972) between measured and actual values. In a blind test of 35 artificial urine samples, the system achieved a recovery rate of 98.33%, demonstrating high accuracy and potential for rapid UTI diagnosis.
In summary, the microfluidic detection system established in this study provides a precise and low-consumption alternative for UTI diagnosis. It holds great potential for applications in home health monitoring, telemedicine, and clinical diagnostics, offering a practical and efficient solution for the prevention, early detection, and management of urinary tract infections.
[1] Z. Zeng, J. Zhan, K. Zhang, H. Chen, and S. Cheng, "Global, regional, and national burden of urinary tract infections from 1990 to 2019: an analysis of the global burden of disease study 2019," World Journal of Urology, vol. 40, no. 3, pp. 755–763, 2022.
[2] S. Salvatore, S. Salvatore, E. Cattoni, G. Siesto, M. Serati, P. Sorice, and M. Torella, "Urinary tract infections in women," European Journal of Obstetrics & Gynecology and Reproductive Biology, vol. 156, no. 2, pp. 131–136, 2011.
[3] B. Foxman, "Epidemiology of urinary tract infections: incidence, morbidity, and economic costs," American Journal of Medicine, vol. 113, no. 1, pp. 5–13, 2002.
[4] E. Walker, A. Lyman, K. Gupta, M. V. Mahoney, G. M. Snyder, and E. B. Hirsch, "Clinical management of an increasing threat: outpatient urinary tract infections due to multidrug-resistant uropathogens," Clinical Infectious Diseases, vol. 63, no. 7, pp. 960–965, 2016.
[5] C. W. Norden, G. M. Green, and E. H. Kass, "Antibacterial mechanisms of the urinary bladder," Journal of Clinical Investigation, vol. 47, no. 12, pp. 2689–2700, 1968.
[6] G. Mancuso, A. Midiri, E. Gerace, M. Marra, S. Zummo, and C. Biondo, "Urinary tract infections: the current scenario and future prospects," Pathogens, vol. 12, no. 4, p. 623, 2023.
[7] B. Baimakhanova, A. Sadanov, L. Trenozhnikova, A. Balgimbaeva, G. Baimakhanova, S. Orasymbet, and A. Turgumbayeva, "Understanding the burden and management of urinary tract infections in women," Diseases, vol. 13, no. 2, p. 59, 2025.
[8] K. Dickson, J. Zhou, and C. Lehmann, "Lower urinary tract inflammation and infection: key microbiological and immunological aspects," Journal of Clinical Medicine, vol. 13, no. 2, p. 315, 2024.
[9] J. D. García-García, L. M. Contreras-Alvarado, A. Cruz-Córdova, R. Hernández-Castro, M. Flores-Encarnacion, S. Rivera-Gutiérrez, J. Arellano-Galindo, S. A. Ochoa and J. Xicohtencatl-Cortes, "Pathogenesis and immunomodulation of urinary tract infections caused by uropathogenic Escherichia coli," Microorganisms, vol. 13, no. 4, p. 745, 2025.
[10] N. Guernion, N. M. Ratcliffe, P. T. Spencer-Phillips, and R. A. Howe, "Identifying bacteria in human urine: current practice and the potential for rapid, near-patient diagnosis by sensing volatile organic compounds," Journal of Applied Microbiology, vol. 91, no. 5, pp. 893–906, 2001.
[11] M. S. Najar, C. L. Saldanha, and K. A. Banday, "Approach to urinary tract infections," Indian Journal of Nephrology, vol. 19, no. 4, pp. 129–139, 2009.
[12] C. Kenneally, C. P. Murphy, R. D. Sleator, and E. P. Culligan, "The urinary microbiome and biological therapeutics: novel therapies for urinary tract infections," Microbiological Research, vol. 259, p. 127010, 2022.
[13] L. E. Nicolle, "Urinary tract infection: traditional pharmacologic therapies," American Journal of Medicine, vol. 113, no. 1, pp. 35–44, 2002.
[14] E. Walker, A. Lyman, K. Gupta, M. V. Mahoney, G. M. Snyder, and E. B. Hirsch, "Clinical management of an increasing threat: outpatient urinary tract infections due to multidrug-resistant uropathogens," Clinical Infectious Diseases, vol. 63, no. 7, pp. 960–965, 2016.
[15] J. B. Kaper, J. P. Nataro, and H. L. Mobley, "Pathogenic Escherichia coli," Nature Reviews Microbiology, vol. 2, no. 2, pp. 123–140, 2004.
[16] R. H. S. Tanabe, R. C. B. Dias, H. Orsi, D. R. P. de Lira, M. A. Vieira, L. F. dos Santos, A. M. Ferreira, V. L. M. Rall, A. L. Mondelli, T. A. T. Gomes, C. H. Camargo, and R. T. Hernandes, "Characterization of uropathogenic Escherichia coli reveals hybrid isolates of uropathogenic and diarrheagenic (UPEC/DEC) E. coli," Microorganisms, vol. 10, no. 3, p. 645, 2022.
[17] T. J. Wiles, R. R. Kulesus, and M. A. Mulvey, "Origins and virulence mechanisms of uropathogenic Escherichia coli," Experimental and Molecular Pathology, vol. 85, no. 1, pp. 11–19, 2008.
[18] M. E. Terlizzi, G. Gribaudo, and M. E. Maffei, "Uropathogenic Escherichia coli (UPEC) infections: virulence factors, bladder responses, antibiotic, and non-antibiotic antimicrobial strategies," Frontiers in Microbiology, vol. 8, p. 1566, 2017.
[19] G. R. Nielubowicz and H. L. Mobley, "Host–pathogen interactions in urinary tract infection," Nature Reviews Urology, vol. 7, no. 8, pp. 430–441, 2010.
[20] C. Chircov and A. M. Grumezescu, "Microelectromechanical systems (MEMS) for biomedical applications," Micromachines, vol. 13, no. 2, p. 164, 2022.
[21] H. Hassanin, G. Sheikholeslami, P. Sareh, and R. B. Ishaq, "Microadditive manufacturing technologies of 3D microelectromechanical systems," Advanced Engineering Materials, vol. 23, no. 12, p. 2100422, 2021.
[22] M. W. Ashraf, S. Tayyaba, and N. Afzulpurkar, "Micro electromechanical systems (MEMS) based microfluidic devices for biomedical applications," International Journal of Molecular Sciences, vol. 12, no. 6, pp. 3648–3704, 2011.
[23] D. R. Reyes, D. Iossifidis, P. A. Auroux, and A. Manz, "Micro total analysis systems. 1. Introduction, theory, and technology," Analytical Chemistry, vol. 74, no. 12, pp. 2623–2636, 2002.
[24] C. D. Chin, V. Linder, and S. K. Sia, "Lab-on-a-chip devices for global health: Past studies and future opportunities," Lab on a Chip, vol. 7, no. 1, pp. 41–57, 2007.
[25] P. S. Dittrich and A. Manz, "Lab-on-a-chip: microfluidics in drug discovery," Nature Reviews Drug Discovery, vol. 5, no. 3, pp. 210–218, 2006.
[26] D. Mark, S. Haeberle, G. Roth, F. Von Stetten, and R. Zengerle, "Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications," Microfluidics Based Microsystems: Fundamentals and Applications, pp. 305–376, 2010.
[27] Y. C. Lim, A. Z. Kouzani, and W. Duan, "Lab-on-a-chip: a component view," Microsystem Technologies, vol. 16, no. 12, pp. 1995–2015, 2010.
[28] C. T. Culbertson, T. G. Mickleburgh, S. A. Stewart-James, K. A. Sellens, and M. Pressnall, "Micro total analysis systems: fundamental advances and biological applications," Analytical Chemistry, vol. 86, no. 1, pp. 95–118, 2014.
[29] K. N. Han, C. A. Li, and G. H. Seong, "Microfluidic chips for immunoassays," Annual Review of Analytical Chemistry, vol. 6, no. 1, pp. 119–141, 2013.
[30] S. M. Yang, S. Lv, W. Zhang, and Y. Cui, "Microfluidic point-of-care (POC) devices in early diagnosis: a review of opportunities and challenges," Sensors, vol. 22, no. 4, p. 1620, 2022.
[31] M. Rahdar, A. Rashki, H. R. Miri, and M. R. Ghalehnoo, "Detection of pap, sfa, afa, foc, and fim adhesin-encoding operons in uropathogenic Escherichia coli isolates collected from patients with urinary tract infection," Jundishapur Journal of Microbiology, vol. 8, no. 8, p. e22647, 2015.
[32] Y. Sun, X. Wang, J. Li, F. Xue, F. Tang, and J. Dai, "Extraintestinal pathogenic Escherichia coli utilizes the surface-expressed elongation factor Tu to bind and acquire iron from holo-transferrin," Virulence, vol. 13, no. 1, pp. 698–713, 2022.
[33] D. K. Govindarajan, B. M. Eskeziyaw, K. Kandaswamy, and D. Y. Mengistu, "Diagnosis of extraintestinal pathogenic Escherichia coli pathogenesis in urinary tract infection," Current Research in Microbial Sciences, vol. 7, p. 100296, 2024.
[34] J. D. Spencer, A. R. Jackson, B. Li, C. B. Ching, M. Vonau, R. S. Easterling, A. L. Schwaderer, K. M. McHugh, and B. Becknell, "Expression and significance of the HIP/PAP and RegIIIγ antimicrobial peptides during mammalian urinary tract infection," PLoS One, vol. 10, no. 12, p. e0144024, 2015.
[35] R. A. Welch, "Uropathogenic Escherichia coli‐associated exotoxins," Urinary Tract Infections: Molecular Pathogenesis and Clinical Management, pp. 263–276, 2017.
[36] P. Boquet, "The cytotoxic necrotizing factor 1 (CNF1) from Escherichia coli," Toxicon, vol. 39, no. 11, pp. 1673–1680, 2001.
[37] Z. Knust and G. Schmidt, "Cytotoxic necrotizing factors (CNFs)− a growing toxin family," Toxins, vol. 2, no. 1, pp. 116–127, 2011.
[38] F. Reppin, S. Cochet, W. El Nemer, G. Fritz, and G. Schmidt, "High affinity binding of Escherichia coli cytotoxic necrotizing factor 1 (CNF1) to Lu/BCAM adhesion glycoprotein," Toxins, vol. 10, no. 1, p. 3, 2017.
[39] M. Blanco, J. E. Blanco, J. Blanco, M. P. Alonso, C. Balsalobre, M. Mouriño, C. Madrid, and A. Juárez, "Polymerase chain reaction for detection of Escherichia coli strains producing cytotoxic necrotizing factor type 1 and type 2 (CNF1 and CNF2)," Journal of Microbiological Methods, vol. 26, no. 1–2, pp. 95–101, 1996.
[40] E. Oswald, P. Pohl, E. Jacquemin, P. Lintermans, K. Van Muylem, A. D. O’Brien, and J. Mainil, "Specific DNA probes to detect Escherichia coli strains producing cytotoxic necrotising factor type 1 or type 2," Journal of Medical Microbiology, vol. 40, no. 6, pp. 428–434, 1994.
[41] M. Tabouret and J. De Rycke, "Detection of cytotoxic necrotising factor (CNF) in extracts of Escherichia coli strains by enzyme-linked immunosorbent assay," Journal of Medical Microbiology, vol. 32, no. 2, pp. 73–81, 1990.
[42] K. Ren, J. Zhou, and H. Wu, "Materials for microfluidic chip fabrication," Accounts of Chemical Research, vol. 46, no. 11, pp. 2396–2406, 2013.
[43] P. Pattanayak, S. K. Singh, M. Gulati, S. Vishwas, B. Kapoor, D. K. Chellappan, K. Anand, G. Gupta, N. K. Jha, P. K. Gupta, P. Prasher, K. Dua, H. Dureja, D. Kumar, and V. Kumar, "Microfluidic chips: recent advances, critical strategies in design, applications and future perspectives," Microfluidics and Nanofluidics, vol. 25, no. 12, p. 99, 2021.
[44] H. Liu, Y. Wang, K. Cui, Y. Guo, X. Zhang, and J. Qin, "Advances in hydrogels in organoids and organs‐on‐a‐chip," Advanced Materials, vol. 31, no. 50, p. 1902042, 2019.
[45] A. Shakeri, S. Khan, and T. F. Didar, "Conventional and emerging strategies for the fabrication and functionalization of PDMS-based microfluidic devices," Lab on a Chip, vol. 21, no. 16, pp. 3053–3075, 2021.
[46] M. K. Raj and S. Chakraborty, "PDMS microfluidics: A mini review," Journal of Applied Polymer Science, vol. 137, no. 27, p. 48958, 2020.
[47] E. Mitri, G. Birarda, L. Vaccari, S. Kenig, M. Tormen, and G. Grenci, "SU-8 bonding protocol for the fabrication of microfluidic devices dedicated to FTIR microspectroscopy of live cells," Lab on a Chip, vol. 14, no. 1, pp. 210–218, 2014.
[48] Y. Ren, S.-H. Huang, S. Mosser, M. O. Heuschkel, A. Bertsch, P. C. Fraering, J.-J. J. Chen, and P. Renaud, "A simple and reliable PDMS and SU-8 irreversible bonding method and its application on a microfluidic-MEA device for neuroscience research," Micromachines, vol. 6, no. 12, pp. 1923–1934, 2015.
[49] P. R. Konari, Y. D. Clayton, M. B. Vaughan, M. Khandaker, and M. R. Hossan, "Experimental analysis of laser micromachining of microchannels in common microfluidic substrates," Micromachines, vol. 12, no. 2, p. 138, 2021.
[50] X. Liu, A. Sun, J. Brodský, I. Gablech, T. Lednický, P. Vopařilová, O. Zítka, W. Zeng, and P. Neužil, "Microfluidics chips fabrication techniques comparison," Scientific Reports, vol. 14, no. 1, p. 28793, 2024.
[51] A. W. Martinez, S. T. Phillips, M. J. Butte, and G. M. Whitesides, "Patterned paper as a platform for inexpensive, low-volume, portable bioassays," Angewandte Chemie, vol. 119, no. 8, pp. 1340–1342, 2007.
[52] M. Borah and H. S. Dutta, "Advances in paper-based ELISA techniques: From innovations in devices to emerging applications," TrAC Trends in Analytical Chemistry, p. 118123, 2024.
[53] B. Pang, C. Zhao, L. Li, X. Song, K. Xu, J. Wang, Y. Liu, K. Fu, H. Bao, D. Song, X. Meng, X. Qu, Z. Zhang, and J. Li, "Development of a low-cost paper-based ELISA method for rapid Escherichia coli O157:H7 detection," Analytical Biochemistry, vol. 542, pp. 58–62, 2018.
[54] C. M. Shih, C. L. Chang, M. Y. Hsu, J. Y. Lin, C. M. Kuan, H. K. Wang, C. T. Huang, M. C. Chung, K. C. Huang, C. E. Hsu, C. Y. Wang, Y. C. Shen, C. M. Cheng, " Paper-based ELISA to rapidly detect Escherichia coli," Talanta, vol. 145, pp. 2–5, 2015.
[55] N. Saengsawang, T. Ruang-Areerate, P. Kesakomol, T. Thita, M. Mungthin, and W. Dungchai," Development of a fluorescent distance-based paper device using loop-mediated isothermal amplification to detect Escherichia coli in urine," Analyst, vol. 145, no. 24, pp. 8077–8086, 2020.
[56] J. Chen, Y. Xu, H. Yan, Y. Zhu, L. Wang, Y. Zhang, Y. Lu, W. Xing," Sensitive and rapid detection of pathogenic bacteria from urine samples using multiplex recombinase polymerase amplification," Lab on a Chip, vol. 18, no. 16, pp. 2441–2452, 2018.