| 研究生: |
徐浩翔 Hsu, Hao-Hsiang |
|---|---|
| 論文名稱: |
配置主動質量阻尼器之多項式變曲率隔震系統隔震位移控制效能驗證 Real-Time Hybrid Testing and Shaking Table Verification on Isolation Displacement Control of PSIVC Isolated Systems with Active Mass Damper |
| 指導教授: |
朱世禹
Chu, Shih-Yu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 232 |
| 中文關鍵詞: | 振動台實驗 、即時複合實驗 、主動質量阻尼器 、線性二調節器 、直接輸出回饋 、最佳化控制理論 、時間延遲效應 、多項式變曲率滑動支承 |
| 外文關鍵詞: | shaking table test, real-time hybrid testing, active mass damper, direct output feedback, optimal control theory, linear quadratic regulator, time delay effect, polynomial sliding isolator with variable curvature |
| 相關次數: | 點閱:160 下載:10 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,隔震技術已廣泛應用於世界各地之建築上,隔震技術運用拉長系統週期,以減少上傳至上部結構之地震力,達到保護結構物或設備與降低其損壞。然而,當隔震結構受長周期之強震作用下,容易產生隔震位移過大的情況,進而造成結構安全的問題,為了解決此問題,本文研究使用主動式質量阻尼器系統,改善隔震結構的減振效能,期能達到降低隔震位移之目的。首先以數值模擬分別探討TMD與AMD不同控制系統之控制成效和延遲時間與控制參數選擇對主動控制系統的影響。而為了確保真實主動控制安裝於隔震結構上能夠有效發揮減震效果,將前人已開發為AMD之伺服馬達振動平台,真實安裝於PSIVC隔震結構上,並進行振動台實驗,以驗證AMD對於PSIVC隔震結構之控制成效。而實務上,礙於研究成本和實驗空間等問題,發展出即時複合實驗,原理為將主結構數值化並寫入電腦,由電腦內之主結構數值模型計算主結構受地震力作用之反應,再由振動台將主結構頂層之反應呈現,真實次結構則是放置於振動台上,如此即可利用模擬之主結構與真實次結構互制,以得到與振動台實驗差距不遠之結果。而本文也使用國家地震工程研究中心台南實驗室之MAST振動台進行主動控制即時複合實驗之可行性評估與探討。
Recently, seismic isolation technology has been widely used in buildings around the world. However, seismic isolation structures are prone to excessive seismic isolation displacement when subjected to an earthquake with long-period components, which will cause structural safety problem. To solve it, this thesis investigates the use of active mass damper (AMD) to reduce isolation displacement. Firstly, numerical simulation (NS) is used to verify the control effectiveness of different control systems and the influence of selection of delay time and control parameters on the active control systems. To ensure its real performance, the servo-motor controlled platform sereved as an AMD on the PSIVC isolated systems is implemented to conduct the shaking table test (STT) in this thesis. In practice, due to cost and space limitation, the real-time hybrid testing (RTHT) has been developed. The RTHT method is to divide the tested structure into two parts: a primary structure and a substructure. In the test, the response of the primary structure is simulated by using a numerical model, and the substructure is physically tested. In this way, the simulated primary structure and the real substructure can be used to interact with the shaking table. In this thesis, the MAST shaking table is adopted to conduct the STT and the RTHT to verify isolation displacement mitigation performance of the PSIVC isolated systems equipped with AMD.
[1] Agrawal, A. K., Fujino, Y., & Bhartia, B. K. (1993). Instability due to time delay and its compensation in active control of structures. Earthquake Engineering & Structural Dynamics, 22(3), 211-224.
[2] Agrawal, A. K., & Yang, J. (1997). Effect of fixed time delay on stability and performance of actively controlled civil engineering structures. Earthquake Engineering & Structural Dynamics, 26(11), 1169-1185.
[3] Carrion, J. E., & Spencer Jr, B. F. (2007). Model-based strategies for real-time hybrid testing: Newmark Structural Engineering Laboratory, University of Illinois at Urbana-Champaign.
[4] Chu, S. Y., Lu, L. Y., & Yeh, S. W. (2018). Real‐time hybrid testing of a structure with a piezoelectric friction controllable mass damper by using a shake table. Structural Control and Health Monitoring, 25(3), 21-24.
[5] Chu, S. Y., Soong, T. T., Lin, C. C., & Chen, Y. Z. (2002). Time‐delay effect and compensation on direct output feedback controlled mass damper systems. Earthquake Engineering & Structural Dynamics, 31(1), 121-137.
[6] Chu, S. Y., Soong, T. T., Reinhorn, A. M., Helgeson, R. J., & Riley, M. A. (2002). Integration issues in implementation of structural control systems. Journal of Structural Control, 9(1), 31-58.
[7] Chung, W. J., Yun, C. B., Kim, N. S., & Seo, J. W. (1999). Shaking table and pseudodynamic tests for the evaluation of the seismic performance of base-isolated structures. Engineering Structures, 21(4), 365-379.
[8] Dermitzakis, S. N., & Mahin, S. A. (1985). Development of substructuring techniques for on-line computer controlled seismic performance testing. University of California, Berkeley.
[9] Hakuno, M., Shidawara, M., & Hara, T. (1969). Dynamic destructive test of a cantilever beam, controlled by an analog-computer. Japan society of civil engineers, 1969(171), 1-9.
[10] Horiuchi, T., Inoue, M., Konno, T., & Yamagishi, W. (1999). Development of a Real-Time Hybrid Experimental System Using a Shaking Table:(Proposal of Experiment Concept and Feasibility Study with Rigid Secondary System). International Journal Series C Mechanical Systems, Machine Elements Manufacturing, 42(2), 255-264.
[11] Inaudi, J. A., & Kelly, J. M. (1994). A robust delay‐compensation technique based on memory. Earthquake Engineering & Structural Dynamics, 23(9), 987-1001.
[12] Lin, C. C., Sheu, J. F., Chu, S. Y., & Chung, L. L. (1996). Time‐delay effect and its solution for optimal output feedback control of structures. Earthquake Engineering & Structural Dynamics, 25(6), 547-559.
[13] Lu, L. Y., Lee, T. Y., Juang, S. Y., & Yeh, S. W. (2013). Polynomial friction pendulum isolators (PFPIs) for building floor isolation: An experimental and theoretical study. Engineering Structures, 56, 970-982.
[14] Lu, L. Y., Lee, T. Y., & Yeh, S. W. (2011). Theory and experimental study for sliding isolators with variable curvature. Earthquake Engineering & Structural Dynamics, 40(14), 1609-1627.
[15] Nakashima, M. (2020). Hybrid simulation: An early history. Earthquake Engineering & Structural Dynamics, 49(10), 949-962.
[16] Nakashima, M., Kato, H., & Takaoka, E. (1992). Development of real‐time pseudo dynamic testing. Earthquake Engineering & Structural Dynamics, 21(1), 79-92.
[17] Reinhorn, A., Sivaselvan, M., Weinreber, S., & Shao, X. (2004). Real-time dynamic hybrid testing of structural systems. World Conference on Earthquake Engineering, NO:1664.
[18] Takanashi, K., Udagawa, K., Seki, M., Okada, T., & Tanaka, H. (1975). Nonlinear earthquake response analysis of structures by a computer-actuator on-line system. Transactions of the Architectural Institute of Japan, 8, 1-17.
[19] Yang, T. Y., Mosqueda, G., & Stojadinovic, B. (2008). Evaluating the quality of hybrid simulation test using an energy-based approach. World Conference on Earthquake Engineering.
[20] Zhang, R., Lauenstein, P. V., & Phillips, B. M. (2016). Real-time hybrid simulation of a shear building with a uni-axial shake table. Engineering Structures, 119, 217-229.
[21] 朱世禹(1992)。直接輸出回饋之主動結構控制。碩士論文,國立中興大學土木工程研究所,台中市。
[22] 朱凱業(2013)。多項式變曲率滑動支承之混合實驗。碩士論文,國立成功大學土木工程研究所,台南市。
[23] 吳依寰(2011)。摩擦型阻尼器系統之擬動態試驗與振動台驗證。碩士論文,國立成功大學土木工程研究所,台南市。
[24] 呂國華(1993)。考慮時間延遲之離散時間系統最佳直接輸出回饋控制。碩士論文,國立中興大學土木工程研究所,台中市。
[25] 李明鴻(2006)。應用快速擬動態試驗技術於線性含斜撐框架動態反應之模擬與試驗。碩士論文,國立成功大學土木工程研究所,台南市。
[26] 林煒松(2019)。採用不同振動台進行即時複合實驗之效能探討。碩士論文,國立成功大學土木工程研究所,台南市。
[27] 侯佳玟(2007)。最佳化時間延遲補償之擬混合型調諧質量阻尼器於結構振動控制之研究。碩士論文,國立成功大學土木工程研究所,台南市。
[28] 馬士勛(2020)。配置PSIVC系統之即時類比式硬體模擬與複合試驗。碩士論文,國立成功大學土木工程研究所,台南市。
[29] 梁婷茹(2013)。伺服馬達控制質量阻尼器之混合實驗。碩士論文,國立成功大學土木工程研究所,台南市。
[30] 許敬昀(2014)。摩擦型調諧質量阻尼器系統之混合實驗驗證。碩士論文,國立成功大學土木工程研究所,台南市。
[30] 黃百誼,賴晉達,柴駿甫&林凡茹(2019)。關鍵零組件測試系統介紹。國家地震工程研究中心年度研究成果報告,157。
[31] 賈博宇(2016)。振動台效能對PFCMD即時複合實驗之影響探討。碩士論文,國立成功大學土木工程研究所,台南市。
[32] 鄒永楷(2012)。應用伺服馬達控制平台進行主動質量阻尼器之研發與測試。碩士論文,國立成功大學土木工程研究所,台南市。
[33] 葉士瑋,張汎博,盧煉元,蕭輔沛(2021)。PRTTM記憶體共享即時控制器標準作業程序書。國家地震工程研究中心技術報告,報告編號:NCREE-21-010。
[33] 鄧孟澤(2019)。應用數位式硬體模擬試驗進行即時振動台複合實驗誤差之階段性探討。碩士論文,國立成功大學土木工程研究所,台南市。
[34] 賴畇希(2021)。多項式變曲率滑動支承之類比式硬體模擬與應用多軸向振動台進行即時複合試驗研究。碩士論文,國立成功大學土木工程研究所,台南市。
[35] 顏呈璁(2009)。多重取樣量測對擬動態試驗誤差之影響。碩士論文,國立成功大學土木工程研究所,台南市。
[36] 羅仕杰(2005)。記憶體共享光纖網路設備於即時擬動態試驗之初步研究。碩士論文,國立暨南國際大學土木工程研究所,南投縣。