簡易檢索 / 詳目顯示

研究生: 陳逸安
Chen, Yi-An
論文名稱: 利用電性量測分析Ga-In之共晶系統之奈米複合材料的超導行為
TRANSPORT STUDIES OF SUPERCONDUCTING GALLIUM-INDIUM EUTECTIC UNDER NANOCONFINEMENT
指導教授: 張烈錚
Chang, Lieh-Jeng
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 74
中文關鍵詞: 超導奈米結構共晶系統
外文關鍵詞: Superconductor, Eutectic system, Nanoconfinement
相關次數: 點閱:61下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 根據先前的研究,若將第一類超導體嵌入奈米結構之中會形成超導奈米結構,可藉由上臨界磁場曲線的走勢不同觀察出其超導行為與傳統的超導體有所不同[1]。在這次研究中,我們會藉由上臨界磁場曲線曲率的變化以及活化能走勢的變化來分析渦旋相變的變化。而為了研究不同結構下的超導奈米結構的行為我們將鎵及銦金屬以不同的比例混合 (15:85, 90:10, 94:6, 96:4) 以形成不同的共晶結構,並藉由高壓(10 kbar)放入相同的奈米結構之中(平均孔徑為 7 nm 之多孔隙玻璃)後,再藉由四點量測的方式取其電阻率後進行後續分析。電阻的量測由Quantum Design PPMS 提供不同的溫度以及磁場再藉由Keithly 6221 & 2182A進行電流的提供以及電阻的測量,主要量測的溫度範圍為1.9 K ~ 12 K 磁場強度則達到9 T,在此次研究中,我們希望可以藉由調控銦參雜的比例而控制超導奈米結構的上臨界磁場曲線的行為,以及其活化能的走勢。

    According to our previous studies, superconducting nanocomposite (SCNC) loaded with type I superconductors shows an exotic superconducting phase diagram with a curvature crossover of upper critical field line[1]. In these studies, we report the observation of a curvature crossover of upper critical field line resulting from vortex phase transition without addressing types of superconductor and geometry effects in superconductivity. To clarify the influences of from type I to type II superconductor in SCNC, we study the superconductivity of Gallium-Indium eutectic under the same kind of nanoconfinement (porous glass with average pore diameter 7 nm) by conventional four-point transport measurements. To do so, several Gallium-Indium with different compositions in wt % (15:85, 90:10, 94:6, 96:4) were loaded into porous glass matrices by high pressure up to 10 kbar. The temperature dependences of resistance for different samples were measured by Quantum Design PPMS and Keithly 6221 & 2182A, in the temperature range 1.9~12 K and magnetic field up to 9T. In this study, we demonstrate that, by tuning Indium doping ratio, we can manipulate the behavior of curvature crossover of upper critical field line in SCNC.

    1. 簡介 1 2. 實驗方法及儀器與樣品 3 2-1. 實驗儀器與量測方法 3 2-1-1. Physical Property Measurement System (PPMS) 4 2-1-2. 電阻量測套件 5 2-2. 樣品 8 3. 理論介紹 9 3-1. 超導性簡述 9 3-2. 臨界場與溫度之關係 13 3-3. 渦漩(Vortex) 15 3-4. 超導奈米結構 17 3-5. 共晶系統 18 4. 實驗及數據 19 4-1. Ga96In4 7 nm孔徑多孔隙玻璃電阻量測數據 19 4-2. Ga94In6 7 nm孔徑多孔隙玻璃電阻量測數據 30 4-3. Ga90In10 5 nm孔徑多孔隙玻璃電阻量測數據 41 4-4. Ga15In85 7 nm孔徑多孔隙玻璃電阻量測數據 52 5. 實驗分析 63 6. 結論 70 7. 文獻摘要 72

    1. N. K. Hindley, J. H. P. Watson, Phys. Rev. 183, 525 (1969).
    2. H. K. Onnes, KNAW Proceedings 14, 113 (1911).
    3. H. K. Onnes, KNAW Proceedings 14,,818 (1912).
    4. W. Meissner, R. Ochsenfeld, Naturwissenschaften, 21, 787 (1933).
    5. J. G. Bednorz, K. A. Müller, Z. Physik, B 64, (1986).
    6. M. K. Wu, J. R. Ashburn, Phys. Rev. Lett. 58, 908 (1987).
    7. H. Maeda, Y. Tanaka, M. Fukutomi, T. Asano, J. Appl. Phys. 27, L209 (1988).
    8. Z. Z. Sheng, A. M. Hermann, Perspectives in Condensed Matter Physics 7, 305 (1993).
    9. Z. Z. Sheng, A. M. Hermann, A. E. Ali, C. Almasan, J. Estrada, T. Datta, R. J. Matson, Phys. Rev. Lett. 60, 937 (1988).
    10. A. Schilling, M. Cantoni, J. D. Guo, H. R. Ott, Nature 363, 56 (1993).
    11. J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, J. Akimitsu, Nature 410, 63 (2001).
    12. W. N. Kang, H. J. Kim, E. M. Choi, C. U. Jung, S. I. Lee, Science 292, 1521 (2001).
    13. K. Yoichi, H. Hidenori, H. Masahiro, K. Ryuto, Y. Hiroshi, K. Toshio, H. Hideo, J. Am. Chem. Soc. 128, 10012 (2006).
    14. K. Yoichi, W. Takumi, H. Masahiro, H. Hideo, J. Am. Chem. Soc. 130, 3296 (2008).
    15. C. P. Bean, Margaret V. Doyle, A. G. Pincus, Phys. Rev. Lett. 9, 93 (1962).
    16. J. H. P. Watson, Phys. Rev. 148, 223 (1966).
    17. J. H. P. Watson, Phys. Lett. A 25, 326 (1967).
    18. E. V. Charnaya, C. Tien, C. S. Wur, Y. A. Kumzerov, Physica C 269, 313 (1996).
    19. E. V. Charnaya, C. Tien , K. J. Lin, C. S. Wur, Yu. A. Kumzerov, Phys. Rev. B 58, 467 (1998).
    20. C. Tien, C. S. Wur, K. J. Lin, J. S. Hwang, E. V. Charnaya, Y. A. Kumzerov, Phys. Rev. B 54, 11880, (1996).
    21. V. Grinenko, E. P. Krasnoperov, V. A. Stoliarov, A. A. Bush, B. P. Mikhajlov, J. Phys.: Conf. Ser. 43, 492 (2006).
    22. O. Erdem, E. Yanmaz, Bull. Mater. Sci. 38, 89 (2015).
    23. J. H. P. Watson, Phys. Rev. 148, 223 (1966).
    24. J. File, R. G. Mills, Phys. Rev. Lett. 10, 93 (1963).
    25. A. A. Abrikosov, J. Phys. Chem. Solids. 2, 199 (1957).
    26. M. Tinkham, Introduction to superconductivity 2nd Ed, OXFORD. USA 162 (2009).
    27. J. F. Annett, Superconductivity、Superfluids and Condensates, OXFORD. USA 131 (2011).
    28. P. W. Anderson, P. W. Anderson, Phys. Rev. Lett. 9, 309 (1962).
    29. Y. B. Kim, C. F. Hempstead, A. R. Strnad, Phys. Rev. 131, 2486 (1963).
    30. O. Brunner, L. Antognazza, J. M. Trisco, Phys. Rev. Lett. 67, 1354 (1991).
    31. T. T. M. Palstra, B. Batlogg, L. F. Schneemeyer, J. V. Waszczak, Phys. Rev. Lett. 61, 1662 (1988).
    32. H. Lei, R. Hu, C. Petrovic, Phys. Rev. B 84, 014520 (2011).
    33. M. Shahbazi, X. L. Wang, C. Shekhar, O. N. Srivastava, S. X. Dou, M. Shahbazi, Supercond. Sci. Technol. 23, 105008 (2010).
    34. C. Shekhar, A. Srivastava, P. Kumar, P. Srivastava, O. N. Srivastava, Supercond. Sci. Technol. 25, 045004 (2012).
    35. C. Tien, E. V. Charnaya, D. Y. Xing, A. L. Pirozerskii, Yu. A. Kumzerov, Y. S. Ciou, M. K. Lee, Phys. Rev. B 83, 014502, (2011).
    36. F. Dong, M. J. Graf, T. E. Huber, C. I. Huber, Solid State Commun. 101, 929 (1997).
    37. M. K. Lee, E. V. Charnaya, Cheng Tien, L. J. Chang, Yu. A. Kumzerov, J. Appl. Phys. 113, 113903 (2013).
    38. E. H. Brandt, Phys. Rev. B 55, 14513 (1997).
    39. F. Gömöry, Supercond. Sci. Technol. 10, 523 (1997).
    40. S. Gheorghe, B. F. Stuart,J. M. Martinis, Phys. Rev. Lett. 92, 097003 (2004).
    41. G. Karapetrov, J. Fedor, M. Iavarone, D. Rosenmann, W. K. Kwok, Phys. Rev. Lett. 95, 167002 (2005).
    42. A. Kanda, B. J. Baelus, D. Y. Vodolazov, J. Berger, R. Furugen, Y. Ootuka, F. M. Peeters, Phys. Rev. B 76, 094519 (2007).
    43. D. G. Gheorghe, R. J. Wijngaarden, W. Gillijns, A. V. Silhanek, V. V. Moshchalkov, Phys. Rev. B 77, 054502 (2008).
    44. E. V. Charnaya, C. Tien, M. K. Lee, Y. A. Kumzerov, J. Phys. Condens Matter. 21, 455304 (2009).
    45. H. Robert, P. Ilya, Science 204, 148 (1979).
    46. G. Prando, P. Carretta, R. De Renzi, S. Sanna, A. Palenzona, M. Putti, M. Tropeano, Phys. Rev. B 83, 174514 (2011).
    47. C. P. Bean, J. D. Livingston, Phys. Rev. Lett. 12, 14 (1964).
    48. G. Stan, S. B. Field, J. M. Martinis, Phys. Rev. Lett. 92, 097003 (2004).
    49. L. Burlachkov, A. E. Koshelev, V. M. Vinokur, Phys. Rev. B 54, 6750 (1996).
    50. D. Kouzoudis, M. Breitwisch, D. K. Finnemore, Phys. Rev. B 60, 10508 (1999).
    51. S. D. Kaushik, V. Braccini, S. Patnaik, Pramana 71, 1335 (2008).
    52. A. Mehdaoui, D. Berling, D. Bolmont, B. Loegel, Mater. Sci. Eng. B 34, 132 (1995).
    53. V. L. Ginzburg, L.D. Landau, Zh. Eksp. Teor. Fiz. 20, 1064 (1950).
    54. G. Prando, P. Carretta, R. De Renzi, S. Sanna, H.-J. Grafe, S. Wurmehl, B. Büchner, Phys. Rev. B 85, 144522 (2012).
    55. T. T. M. Palstra, B. Batlogg, L. F. Schneemeyer, J. V. Waszczak, Phys. Rev. Lett. 61, 1662 (1988).

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE