| 研究生: |
黃晟榮 Huang, Cheng-Rung |
|---|---|
| 論文名稱: |
附著性和抹除性的病原體透過宿主的CDK1-formin訊息路徑造成微絨毛抹除 Host CDK1-formin signal confers microvillar effacement by an attaching and effacing (A/E) pathogen |
| 指導教授: |
陳昌熙
Chen, Chang-Shi |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
醫學院 - 基礎醫學研究所 Institute of Basic Medical Sciences |
| 論文出版年: | 2020 |
| 畢業學年度: | 109 |
| 語文別: | 英文 |
| 論文頁數: | 111 |
| 中文關鍵詞: | 出血性大腸桿菌 、線蟲 、微絨毛肌動蛋白 、細胞週期蛋白B3 、細胞週期蛋白依賴性激酶1 、CYK-1 、PFN-1 |
| 外文關鍵詞: | Enterohemorrhagic E. coli (EHEC), C. elegans, microvillar actin (ACT-5), CYB-3, CDK-1, CYK-1, PFN-1 |
| 相關次數: | 點閱:1538 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
腸出血性大腸桿菌是一種新出現的人畜共通的病原體,其引起全世界人類的出血性腹瀉甚至死亡。腸出血性大腸桿菌藉由誘發肌動蛋白細胞骨架重排導致附著性和抹除性病變 (A/E lesions)。和過去二十年中對於腸出血性大腸桿菌引起的附著性機制深入研究相比,腸出血性大腸桿菌引起的腸道微絨毛抹除的潛在機制仍是未知。在我們先前研究發現,腸出血性大腸桿菌導致微絨毛肌動蛋白異位 (ACT-5 mislocalization),即是微絨毛肌動蛋白從原本的腸細胞的尖端 (apical site) 進而轉變為在腸細胞的細胞質出現,並伴隨著秀麗隱桿線蟲消化道中附著性和抹除性的病變。微絨毛肌動蛋白參與形成核心束結構以支撐腸道微絨毛的正常結構,並且核心束結構中的組件處於持續著不斷更替的狀態。因此,我們認為研究線蟲微絨毛被腸出血性大腸桿菌抹除的機制,腸出血性大腸桿菌誘導的微絨毛肌動蛋白異位是好的生物記號。於是,我們創建了反向遺傳篩選,以尋找參與在出血性大腸桿菌誘導的微絨毛肌動蛋白異位的宿主因子。我們的研究結果顯示cyb-3基因是腸出血性大腸桿菌誘導微絨毛肌動蛋白異位所需的潛在宿主因子。CYB-3蛋白是調控G2/M細胞週期的細胞週期蛋白B3,細胞週期蛋白B3會結合並活化細胞週期蛋白依賴性激酶1 (CDK-1)。我們的結果發現,細胞週期蛋白依賴性激酶1的活性對於腸出血性大腸桿菌誘導的微絨毛肌動蛋白異位是必要的。為了找出CYB-3 / CDK-1信號軸的下游,我們使用RNAi篩選出會影響肌動蛋白動力學的基因。我們的結果發現,腸出血性大腸桿菌誘導的微絨毛肌動蛋白異位需要cyk-1基因和pfn-1基因,並且CYK-1和PFN-1蛋白作用在CYB-3 / CDK-1信號軸的下游。為了在哺乳動物中確認上述的發現,我們使用了人類的腸上皮細胞 (Caco-2 cells) 作為我們的體外細胞模型。我們發現在人類的腸上皮細胞,CCNB3 / CYB-3和CDK1 / CDK-1也是腸出血性大腸桿菌誘導微毛抹除所必需的宿主因子。此外,我們發現RfaD是腸出血性大腸桿菌誘導微絨毛肌動蛋白異位和微毛抹除所必需的細菌因子。總結,我們的實驗結果顯示CYB-3 / CDK-1-CYK-1 / PFN-1信號軸和細菌因子RfaD,在腸出血性大腸桿菌誘導的微絨毛肌動蛋白異位和微毛抹除中扮演重要角色。
Enterohemorrhagic E. coli (EHEC) is an emerging zoonotic pathogen that causes bloody diarrhea and even death in humans worldwide. EHEC induces the characteristic attaching and effacing (A/E) lesion resulted from rearrangements of the actin cytoskeleton. Compared with the mechanism of the EHEC-induced attachment, which have been thoroughly studied in the past two decades, the underlying mechanism of the EHEC-induced effacement of intestinal microvilli remained largely unknown. Our previous studies have demonstrated that EHEC causes mislocalization of the microvillus-specific actin (ACT-5) from the apical site to the cytoplasm in their intestinal cells and concomitant A/E lesion formation in the alimentary tract in Caenorhabditis elegans. The microvillar ACT-5 forms a core bundle structure to support the normal morphology of intestinal microvilli, and the core microvillar assemblies are in a constant turnover state. Therefore, we thought this EHEC-induced mislocalization of microvillar ACT-5 might be a biomarker for studying the microvillar effacement in C. elegans. We, therefore, created a reverse genetic screening to identify the host factors involved in the EHEC-induced ACT-5 mislocalization in C. elegans. In a reverse genetic screening, we found that cyb-3 gene encodes a potential host factor required for this EHEC-induced ACT-5 mislocalization. CYB-3 is a Cyclin B protein that binds to and activates the Cyclin-dependent kinase 1 (CDK-1) in G2/M phase of cell cycle. Our results showed that the CDK-1 activity is indispensable for this EHEC-mediated mislocalization phenotype. To identify downstream of the CYB-3/CDK-1 signaling axis, we used RNAi screening for genes that affect actin dynamics. Our results showed that cyk-1 gene which encodes diaphanous formin and pfn-1 gene which encodes actin-binding profilin are required for the EHEC-induced microvillar actin mislocalization and act downstream to the CDK-1/CYB-3 signal axis. To reconfirm the above findings in mammals, we used cultured human Caco-2 intestinal epithelial cells as our in vitro cell model. We found that CCNB3/CYB-3 and CDK1/CDK-1 are also indispensable for the EHEC-induced microvillar effacement in human intestinal Caco-2 cells. Moreover, we found that bacterial factor, RfaD, is required for this EHEC-induced ACT-5 mislocalization and is also indispensable for the EHEC-induced microvillar effacement in human intestinal Caco-2 cells. Together, all of our data support that the CYB-3/CDK-1-CYK-1/PFN-1 signal axis and bacterial factor, RfaD, play an important role for this EHEC-induced ACT-5 mislocalization and microvillar effacement.
1 Pennington, H. Escherichia coli O157. The Lancet 376, 1428-1435, doi:10.1016/s0140-6736(10)60963-4 (2010).
2 Mohawk, K. L. & O'Brien, A. D. Mouse models of Escherichia coli O157:H7 infection and shiga toxin injection. J Biomed Biotechnol 2011, 258185, doi:10.1155/2011/258185 (2011).
3 Chou, T. C. et al. Enterohaemorrhagic Escherichia coli O157:H7 Shiga-like toxin 1 is required for full pathogenicity and activation of the p38 mitogen-activated protein kinase pathway in Caenorhabditis elegans. Cell Microbiol 15, 82-97, doi:10.1111/cmi.12030 (2013).
4 Lim, J. Y., Yoon, J. & Hovde, C. J. A brief overview of Escherichia coli O157:H7 and its plasmid O157. J Microbiol Biotechnol 20, 5-14 (2010).
5 Van Nhieu, G. T. et al. Enterohemorrhagic E. coli Requires N-WASP for Efficient Type III Translocation but Not for EspFU-Mediated Actin Pedestal Formation. PLoS Pathogens 6, doi:10.1371/journal.ppat.1001056 (2010).
6 Yi, C. & Goldberg, M. Enterohemorrhagic Escherichia coli raises the I-BAR. Proc Natl Acad Sci U S A. (2009).
7 Moreau, V. et al. A complex of N-WASP and WIP integrates signalling cascades that lead to actin polymerization. Nat Cell Biol (2000).
8 Sönnichsen, B. et al. Full-genome RNAi profiling of early embryogenesis in Caenorhabditis elegans. Nature 434, 462 (2005).
9 Satyanarayana, A. & Kaldis, P. Mammalian cell-cycle regulation: several Cdks, numerous cyclins and diverse compensatory mechanisms. Oncogene 28, 2925-2939, doi:10.1038/onc.2009.170 (2009).
10 Matsushime, H. et al. Identification and properties of an atypical catalytic subunit (p34PSK-J3/cdk4) for mammalian D type G1 cyclins. Cell 71, 323-334, doi:10.1016/0092-8674(92)90360-o (1992).
11 Meyerson, M. & Harlow, E. Identification of G1 kinase activity for cdk6, a novel cyclin D partner. Mol Cell Biol 14, 2077-2086, doi:10.1128/mcb.14.3.2077 (1994).
12 Endicott, J. A., Noble, M. E. & Tucker, J. A. Cyclin-dependent kinases: inhibition and substrate recognition. Curr Opin Struct Biol 9, 738-744, doi:10.1016/s0959-440x(99)00038-x (1999).
13 Grana, X. & Reddy, E. P. Cell cycle control in mammalian cells: role of cyclins, cyclin dependent kinases (CDKs), growth suppressor genes and cyclin-dependent kinase inhibitors (CKIs). Oncogene 11, 211-219 (1995).
14 Pagano, M., Draetta, G. & Jansen-Durr, P. Association of cdk2 kinase with the transcription factor E2F during S phase. Science 255, 1144-1147, doi:10.1126/science.1312258 (1992).
15 Tsai, L.-H., Harlow, E. & Meyerson, M. Isolation of the human cdk2 gene that encodes the cyclin A-and adenovirus E1A-associated p33 kinase. Nature 353, 174 (1991).
16 Draetta, G. & Beach, D. Activation of cdc2 protein kinase during mitosis in human cells: cell cycle-dependent phosphorylation and subunit rearrangement. Cell 54, 17-26 (1988).
17 Errico, A., Deshmukh, K., Tanaka, Y., Pozniakovsky, A. & Hunt, T. Identification of substrates for cyclin dependent kinases. Advances in enzyme regulation 50, 375-399 (2010).
18 Taguchi, N., Ishihara, N., Jofuku, A., Oka, T. & Mihara, K. Mitotic phosphorylation of dynamin-related GTPase Drp1 participates in mitochondrial fission. Journal of Biological Chemistry 282, 11521-11529 (2007).
19 Cho, B. et al. CDK5-dependent inhibitory phosphorylation of Drp1 during neuronal maturation. Experimental & molecular medicine 46, e105 (2014).
20 Blethrow, J. D., Glavy, J. S., Morgan, D. O. & Shokat, K. M. Covalent capture of kinase-specific phosphopeptides reveals Cdk1-cyclin B substrates. Proceedings of the National Academy of Sciences 105, 1442-1447 (2008).
21 Paul, A. & Pollard, T. The role of the FH1 domain and profilin in formin-mediated actin-filament elongation and nucleation. Current Biology 18, 9-19 (2008).
22 Bischof, L. J., Huffman, D. L. & Aroian, R. V. Assays for toxicity studies in C. elegans with Bt crystal proteins. Methods Mol Biol 351, 139-154, doi:10.1385/1-59745-151-7:139 (2006).
23 Troemel, E. R. et al. p38 MAPK regulates expression of immune response genes and contributes to longevity in C. elegans. PLoS Genet 2, e183, doi:10.1371/journal.pgen.0020183 (2006).
24 Zarrilli, R. et al. Cell cycle block at G1-S or G2-M phase correlates with differentiation of Caco-2 cells: effect of constitutive insulin-like growth factor II expression. Gastroenterology 116, 1358-1366, doi:10.1016/s0016-5085(99)70500-7 (1999).
25 MacQueen, A. et al. ACT-5 is an essential Caenorhabditis elegans actin required for intestinal microvilli formation. Molecular biology of the cell 16, 3247-3259 (2005).
26 Sato, M. et al. Caenorhabditis elegans SNAP-29 is required for organellar integrity of the endomembrane system and general exocytosis in intestinal epithelial cells. Molecular biology of the cell 22, 2579-2587 (2011).
27 Sato, T. et al. The Rab8 GTPase regulates apical protein localization in intestinal cells. Nature 448, 366 (2007).
28 Bischof, L. J. et al. Activation of the unfolded protein response is required for defenses against bacterial pore-forming toxin in vivo. PLoS Pathog 4, e1000176, doi:10.1371/journal.ppat.1000176 (2008).
29 Brenner, S. The genetics of Caenorhabditis elegans. Genetics 77, 71-94 (1974).
30 Mi-Mi, L., Votra, S., Kemphues, K., Bretscher, A. & Pruyne, D. Z-line formins promote contractile lattice growth and maintenance in striated muscles of C. elegans. J Cell Biol 198, 87-102, doi:10.1083/jcb.201202053 (2012).
31 Tarailo-Graovac, M. & Chen, N. Proper cyclin B3 dosage is important for precision of metaphase-to-anaphase onset timing in Caenorhabditis elegans. G3 (Bethesda) 2, 865-871, doi:10.1534/g3.112.002782 (2012).
32 Los, F. C. O. et al. RAB-5- and RAB-11-dependent vesicle-trafficking pathways are required for plasma membrane repair after attack by bacterial pore-forming toxin. Cell Host Microbe 9, 147-157, doi:10.1016/j.chom.2011.01.005 (2011).
33 Estes, K. A., Szumowski, S. C. & Troemel, E. R. Non-lytic, actin-based exit of intracellular parasites from C. elegans intestinal cells. PLoS pathogens 7, e1002227-e1002227, doi:10.1371/journal.ppat.1002227 (2011).
34 Riedl, J. et al. Lifeact: a versatile marker to visualize F-actin. Nat Methods 5, 605-607, doi:10.1038/nmeth.1220 (2008).
35 Miao, Y. et al. Cell-cycle regulation of formin-mediated actin cable assembly. Proc Natl Acad Sci U S A 110, E4446-4455, doi:10.1073/pnas.1314000110 (2013).
36 Nishimura, K. et al. Cdk1-mediated DIAPH1 phosphorylation maintains metaphase cortical tension and inactivates the spindle assembly checkpoint at anaphase. Nat Commun 10, 981, doi:10.1038/s41467-019-08957-w (2019).
37 Rottner, K., Faix, J., Bogdan, S., Linder, S. & Kerkhoff, E. Actin assembly mechanisms at a glance. J Cell Sci 130, 3427-3435, doi:10.1242/jcs.206433 (2017).
38 Woglar, A. et al. Matefin/SUN-1 phosphorylation is part of a surveillance mechanism to coordinate chromosome synapsis and recombination with meiotic progression and chromosome movement. PLoS Genet 9, e1003335, doi:10.1371/journal.pgen.1003335 (2013).
39 Zuela, N. & Gruenbaum, Y. Matefin/SUN-1 Phosphorylation on Serine 43 Is Mediated by CDK-1 and Required for Its Localization to Centrosomes and Normal Mitosis in C. elegans Embryos. Cells 5, doi:10.3390/cells5010008 (2016).
40 Holmes, J. K. & Solomon, M. J. A predictive scale for evaluating cyclin-dependent kinase substrates. A comparison of p34cdc2 and p33cdk2. J Biol Chem 271, 25240-25246, doi:10.1074/jbc.271.41.25240 (1996).
41 Lewis, C. W. et al. A western blot assay to measure cyclin dependent kinase activity in cells or in vitro without the use of radioisotopes. FEBS Lett 587, 3089-3095, doi:10.1016/j.febslet.2013.08.003 (2013).
42 Hans, F. & Dimitrov, S. Histone H3 phosphorylation and cell division. Oncogene 20, 3021-3027, doi:10.1038/sj.onc.1204326 (2001).
43 Kim, H. J. et al. Cyclin-dependent kinase 1 activity coordinates the chromatin associated state of Oct4 during cell cycle in embryonic stem cells. Nucleic Acids Res 46, 6544-6560, doi:10.1093/nar/gky371 (2018).
44 Maduro, M. F. Gut development in C. elegans. Semin Cell Dev Biol 66, 3-11, doi:10.1016/j.semcdb.2017.01.001 (2017).