簡易檢索 / 詳目顯示

研究生: 曾瓊瑩
Tseng, Chiung-Ying
論文名稱: 直接抗病毒藥物對慢性C型肝炎病人血漿脂肪的影響
Impacts of direct-acting antiviral agents on plasma lipid profiles of chronic hepatitis C patients
指導教授: 楊孔嘉
Young, Kung-Chia
學位類別: 碩士
Master
系所名稱: 醫學院 - 醫學檢驗生物技術學系
Department of Medical Laboratory Science and Biotechnology
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 57
中文關鍵詞: 直接抗病毒藥物C型肝炎病毒脂肪代謝
外文關鍵詞: direct acting antiviral agent, hepatitis C virus, lipid metabolism
相關次數: 點閱:186下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • C型肝炎病毒(Hepatitis C virus, HCV)造成了全球性的健康問題,現今大約有一億八千多萬人口受到C型肝炎病毒感染,且人數仍在持續增加中。C型肝炎病毒感染會引發急性和慢性肝炎的發生,並增加罹患肝硬化、肝癌、代謝紊亂和心血管疾病的風險。先前的研究已證實,C型肝炎病毒許多生長週期階段都有脂質的參與。C型肝炎病毒甚至可以調節宿主細胞中的脂質合成代謝,來維持病毒自身生命週期的穩定。在肝臟細胞中,C型肝炎病毒會抑制極低密度脂蛋白(Very-low-density lipoproteins, VLDL)的分泌,使脂質在肝組織中累積,提供有利於病毒複製與合成的環境。而在血液循環系統中,成熟的C型肝炎病毒顆粒會與極低密度脂蛋白和低密度脂蛋白(Low-density lipoproteins, LDL)等脂蛋白產生連結,並誘發極低密度脂蛋白和低密度脂蛋白之間的動態平衡失調,造成慢性C型肝炎病人的血脂代謝紊亂。目前,最能有效對抗C型肝炎病毒的治療藥物為直接抗病毒藥物(Direct acting antiviral agents, DAAs)。若在泛基因型C型肝炎病毒感染患者身上施以直接抗病毒藥物治療,其持續性病毒反應(Sustained virologic response, SVR)的成功率可高達90%以上。但是,直接抗病毒藥物治療是否能有利於改善慢性C 型肝炎(Chronic hepatitis C, CHC)患者的血脂代謝問題,仍然不清楚。因此,本研究想深入分析慢性C 型肝炎患者接受直接抗病毒藥物治療前後,其各類脂蛋白的變化。受試者為感染了病毒基因型1型的慢性C型肝炎患者,患者分別接受為期12周的安慰劑、Zepatier(Grazoprevir 與Elbasvir,為NS3/4A蛋白酶抑製劑與 NS5A抑製劑)和Harvoni(Ledipasvir與Sofosbuvir,為NS5A抑製劑與NS5B抑製劑)藥物治療。我們收集患者在治療前、治療期間1、4、8、12周和療程結束後第12周的血漿,將血漿連續進行兩次超高速密度梯度離心,分離出極低密度脂蛋白、低密度脂蛋白和高密度脂蛋白(High-density lipoproteins, HDL)。純化後的脂蛋白會進行三酸甘油脂(Triglyceride, TG)、膽固醇(Cholesterol, CHOL)和載脂蛋白(Apoprotein)的定量分析,用以評估直接抗病毒藥物治療對慢性C型肝炎患者脂肪代謝的影響。由此次的研究結果可看到,患者接受直接抗病毒藥物治療後,(i) 極低密度脂蛋白中的三酸甘油脂和膽固醇含量增加,這指出脂蛋白可從肝臟攜帶出較多的脂質分子至血液循環中,故脂肪累積在肝臟的現象可能得以緩解;(ii) 高密度脂蛋白的膽固醇含量增加,這表明心血管疾病的罹患風險降低;(iii) 極低密度脂蛋白中的三酸甘油脂相對於膽固醇的比例值上升,但低密度脂蛋白中的三酸甘油脂相對於膽固醇的比例值下降,這顯示三酸甘油脂的水解效率得到提升。由上述結果推斷,直接抗病毒藥物或許能扭轉C 型肝炎病毒所致的不正常脂肪代謝,並能減緩因C型肝炎病毒而誘發的脂肪肝、代謝紊亂和心血管疾病。

    Hepatitis C virus (HCV) is a global health problem that affects approximately 185 million people persistently. HCV infection causes acute and chronic hepatitis, and increases the risk for the development of liver cirrhosis, hepatocellular carcinoma, metabolic disorders and cardiovascular diseases. Previous researchers have reported that HCV life cycle is closely related with the host lipids. And even, HCV may regulate host cellular lipid homeostasis to maintain a stable viral life cycle. In liver, the very-low-density lipoprotein (VLDL) secretion is negatively modulated by HCV and leads to abnormal lipid accumulation in hepatocytes. In circulation, the mature HCV particles interact with lipoprotein, including VLDL and low-density lipoprotein (LDL). HCV infection is considered to induce the impairment of metabolic VLDL-to-LDL conversion and ultimately results in dyslipidemia. Currently, interferon-free direct acting antiviral agents (DAAs) treatment in pan-genotypic HCV-infected patients has achieved exceeding 90% sustained viral response (SVR). However, whether the DAAs treatment may benefit lipoprotein metabolism in chronic hepatitis C (CHC) patients remains elusive. To analyze lipoprotein changes in patients with HCV-genotype 1 infection receiving Zepatier (Grazoprevir/Elbasvir, NS3/4A protease inhibitor/NS5A replication complex inhibitor), Harvoni (Ledipasvir/Sofosbuvir, NS5A/NS5B inhibitor) and placebo, respectively, the following parameters were analyzed including triglyceride (TG) and cholesterol (CHOL) in plasma, VLDL, LDL and HDL in CHC patients at baseline, weeks at 1, 4, 8, and 12 of treatment and follow-up. In this research, the VLDL, LDL and HDL fractions from plasma were purified by two consecutive density-gradient ultracentrifugations. The results showed that the CHC patients with HCV-genotype 1 infection after DAAs treatment displayed that (i) the levels of VLDL-TG and VLDL-CHOL were increased, indicating that the relief of hepatic lipid accumulation; (ii) increment of HDL-CHOL, suggesting that the risk of cardiovascular diseases might be reduced; (iii) the TG/CHOL ratio was increased in VLDL not in LDL, displaying that an elevation of hydrolysis efficiency of TG. In conclusion, the anti-HCV DAAs might reverse the un-favoring lipid profiles and mitigate HCV-induced steatosis, metabolic disorders and cardiovascular diseases.

    Abstract (In Chinese) I Abstract (In English) III Acknowledgment V Index VI Table and figure index IX Abbreviations XI Items source XII Introduction 1 1. Molecular biology of hepatitis C virus (HCV) 1.1 The background of HCV 1.2 Life cycle of HCV 2. The clinical anti-HCV therapy 2.1 The development of HCV therapy 2.2 The DAAs in this research—Zepatier and Harvoni 2.2.1 Zepatier 2.2.2 Harvoni 3. Lipid metabolism 4. Relationship between HCV and lipid metabolism 4.1 HCV life cycle is closely related with the host lipids in hepatocytes 4.2 Changes of lipid metabolism in chronic hepatitis C (CHC) patients 5. Study goal Materials and Methods 7 1. Patients 2. Blood samples collection 3. VLDL, LDL and HDL isolation 3.1 Preparation of the centrifuge solutions 3.2 Two consecutive density-gradient ultracentrifugations 4. Quantification of apoAI and apoB by ELISA 5. Quantification of TG and CHOL by biochemical analysis 5.1 TG quantification 5.2 CHOL quantification 5.3 HDL-CHOL quantification 6. Formula for calculating the lipid recovery and lipid change ratio 7. Statistical analysis Results 12 1. Isolation of VLDL, LDL and HDL from plasma 2. Patient profiles 3. The HCV titers in the CHC patients were effectively reduced by Zepatier and Harvoni treatment 4. The lipid profile of CHC patient was improved after DAAs treatment (Zepatier treatment or Harvoni treatment) 4.1 Changes of TG and CHOL concentrations in longitudinal analysis of two CHC patients received 12-week Zepatier treatment after 16 weeks observation 4.2 After DAAs treatment, the levels of VLDL-TG, total CHOL, VLDL-CHOL, LDL-CHOL, HDL-CHOL gradually increased, but total TG level decreased 4.3 After DAAs treatment, the TG/CHOL ratio in VLDL gradually increased, but TG/CHOL ratio in LDL and plasma gradually deceased 4.4 After DAAs treatment, the apoB level in plasma and in VLDL and apoAI in VLDL gradually deceased Discussions 17 1. Comparison with previous clinical outcomes 2. The synthesis and secretion of VLDL negatively modulated by HCV were rescued and lipid loading efficacy of VLDL was increased in CHC patients receiving DAAs treatment 3. The lipid metabolism of VLDL and LDL was improved in CHC patients receiving DAAs treatment 4. HCV-induced imbalance in lipid homeostasis was reversed in CHC patients receiving DAAs treatment 5. HCV viral load had a direct effect of CHOL concentration in plasma and in various lipoproteins 6. Conclusion References 21 Tables and figures 25

    Abid K, Pazienza V, Gottardi AD, Brandt LR, Conne B, Pugnale P, Rossi C, Mangia A and Negro F. (2005). An in vitro model of hepatitis C virus genotype 3a-associated triglycerides accumulation. Journal of Hepatology 42, 744–751.

    Barba G, Harper F, Harada T, Kohara M, Goulinet S, Matsuura Y, Eder G, Schaff ZS, Chapman MJ, Miyamura T and Bre ́chot C. (1997). Hepatitis C virus core protein shows a cytoplasmic localization and associates to cellular lipid storage droplets. Cell Biology 94:1200–1205.

    Chaney S. (2005). Overview of lipid metabolism.

    Chevaliez S and Pawlotsky JM. (2006). HCV Genome and Life Cycle. Hepatitis C Viruses Genomes and Molecular Biology 10, 1:1-43.

    Cox RA and García-Palmieri MR. (1990). Cholesterol, Triglycerides, and Associated Lipoproteins. The History, Physical, and Laboratory Examinations 3, 31.

    Feld JJ and Hoofnagle JH. (2005). Mechanism of action of interferon and ribavirin in treatment of hepatitis C. Nature 436:967-972.

    Ferna´ndez-Miranda C, Castellano G, Guijarro C, Ferna´ndez I, Scho¨ebel N, Larumbe S, Go´mez-Izquierdo T and Palacio AD. (1998). Lipoprotein Changes in Patients With Chronic Hepatitis C Treated With Interferon-a. Elsevier Science 93, 10: 1901-1904.

    Fernandez ML and West KL. (2005). Mechanisms by which Dietary Fatty Acids Modulate Plasma Lipids. American Society for Nutritional Sciences 135: 2075–2078.

    Graham JM, Higgins JA, Gillott T, Taylor T, Wilkinson J, Ford T, Billington D. (1996). A novel method for the rapid separation of plasma lipoproteins using self-generating gradients of iodixanol. Atherosclerosis 124: 125-135.

    Herker E and Melanie O. (2012). Emerging Role of Lipid Droplets in Host/Pathogen Interactions. The Journal of Biological Chemistry 287, 4:2280–2287.

    Hoofnagle JH, Mullen KD, Jones DB, Rustgi V, Bisceglie AD, Peters M, Waggoner JG, Yoon Park and Jones EA. (1986) Treatment of Chronic Non-A, Non-B Hepatitis with Recombinant Human Alpha Interferon. The New England Journal of Medicine 315:1575-1578.

    Jármay K, Karácsony G, Nagy A and Schaff Z. (2005). Changes in lipid metabolism in chronic hepatitis C. World Journal of Gastroenterology 11, 41: 6422-6428

    Lange CM, Jacobson IM, Rice CM and Zeuzem S. (2014). Emerging therapies for the treatment of hepatitis C. EMBO Molecular Medicine 6,1:1-15.

    Lange CM, Wagner MV, Bojunga J, Berg T, Farnik H, Hasslera A, Sarrazin C, Herrmann E and Zeuzem S. (2010). Serum lipids in European chronic HCV genotype 1 patients during and after treatment with pegylated interferon-a-2a and ribavirin. European Journal of Gastroenterology & Hepatology 22:1303–1307.

    Lauer GM and Walker BD. (2001). Hepatitis C Virus Infection. The New England Journal of Medicine 345:41-52.

    Laura RB, Quadri R, Abid K, Giostra E, Malé PJ, Mentha G, Spahr L, Zarski JP, Borisch B, Hadengue A, Negro F. (2000). Hepatocyte steatosis is a cytopathic effect of hepatitis C virus genotype 3. Journal of Hepatology 33: 106-15.

    Liefhebber JMP, Hague CV, Zhang Q, Wakelam MJO and McLauchlan J. (2014). Modulation of Triglyceride and Cholesterol Ester Synthesis Impairs Assembly of Infectious Hepatitis C Virus. THE Journal of Biological Chemistry 289, 31: 21276–21288.

    Lindenbac BD and Rice CM. (2013). The ins and outs of hepatitis C virus entry and assembly. Nature Reviews Microbiology 11:688-700.

    Manns MP, McHutchison JG, Gordon SC, Rustgi VK, Shiffman M, Reindollar R, Goodman ZD, Koury K, Ling M, Albrecht JK (2001) Peginterferon alfa-2b plus ribavirin compared with interferon alfa-2b plus ribavirin for initial treatment of chronic hepatitis C: a randomised trial. Lancet 358:958-965.

    McHutchison JG and Poynard T. (1999). Combination therapy with interferon plus ribavirin for the initial treatment of chronic hepatitis C. Seminars in Liver Disease 19:57-65.

    Messina JP, Humphreys I, Flaxman A, Brown A, Cooke GS, Pybus OG and Barnes E. (2015). Global distribution and prevalence of hepatitis C virus genotypes. Hepatology 61:77-87.

    Meissner EG, Lee YJ, Osinusi A, Sims Z, Qin J, Sturdevant D, McHutchison J, Subramanian M, Sampson M, Naggie S, Patel K, Remaley AT, Masur H and Kottilil S. (2015). Effect of Sofosbuvir and Ribavirin Treatment on Peripheral and Hepatic Lipid Metabolism in Chronic Hepatitis C Virus, Genotype 1–Infected Patients. Hepatology 61:790-801.

    Mendivil CO, Zheng C, Furtado J, Lel J and Sacks FM. (2010). Metabolism of VLDL and LDL containing apolipoprotein C-III and not other small apolipoproteins – R2. Arteriosclerosis, Thrombosis, and Vascular Biology 30, 2: 239.

    Miles B. (2003). Review of Lipoproteins.

    Miyanari Y, Atsuzawa K, Usuda N, Watashi K, Hishiki T, Zayas M, Bartenschlager R, Wakita T, Hijikata M and Shimotohno K. (2007). The lipid droplet is an important organelle for hepatitis C virus production. Nature Cell Biology 9, 1089-1097.

    Monazahian M, Böhme I, Bonk S, Koch A, Scholz C, Grethe S and Thomssen R. (1999). Low density lipoprotein receptor as a candidate receptor for hepatitis C virus. Journal of Medical Virology 57: 223-229.

    Myers RP, Ratziu V, Benhamou Y, Martino VD, Moussalli J, Tainturier MH and Poynard T. (2002). Infections with Multiple Hepatotropic Viruses. Polymicrobial Diseases 10, 4:1-35.

    Negro F. (2010). Abnormalities of lipid metabolism in hepatitis C virus infection. Gastroenterology & Hepatology 59: 1279-1287.

    Negro F and Sanyal AJ. (2009). Hepatitis C virus, steatosis and lipid abnormalities: clinicaland pathogenic data. Liver International 29, 2: 26-37.

    Nguyen P, Leray V, Diez M, Serisier S, Bloc’h JL, Siliart B and Dumon H. (2008). Liver lipid metabolism. Journal of Animal Physiology and Animal Nutrition 92: 272-283.

    Nishimura M, Yamamoto H, Yoshida T, Seimiya M, Sawabe Y, Matsushita K, Umemura H, Sogawa K, Takizawa H, Yokosuka O and Nomura F. (2011). Decreases in the Serum VLDL-TG/Non-VLDL-TG Ratio from Early Stages of Chronic Hepatitis C: Alterations in TG-Rich Lipoprotein Levels. PLoS ONE 6, 2: e17309.

    Petit JM, Benichou M, Duvillard L, Jooste V, Bour JB, Minello A, Verges B, Brun JM, Gambert P and Hillon P. (2003). Hepatitis C virus-associated hypobetalipoproteinemia is correlated with plasma viral load, steatosis, and liver fibrosis. The American Journal of Gastroenterology 98:1150-1154.

    Scheel TKH and Rice CM. (2013). Understanding the hepatitis C virus life cycle paves the way for highly effective therapies. Nature medicine 19, 7:837-849.

    Shinohara E, Yamashita S, Kihara S, Hirano K, Ishigami M, Arai T, Nozaki S, Kameda-Takemura K, Kawata S, Matsuzawa Y. (1997). Interferon Alpha Induces Disorder of Lipid Metabolism by Lowering Postheparin Lipases and Cholesteryl Ester Transfer Protein Activities in Patients With Chronic Hepatitis C. Hepatology 25, 6: 1502-6.

    Syed GH, Amako Y and Siddiqui A. (2010). Hepatitis C Virus Hijacks Host Lipid Metabolism. Trends in Endocrinology & Metabolism 21, 1: 33-45.

    Tellinghuisen TL, Evans MJ, Hahn T, You S and Rice CM. (2007) Studying Hepatitis C Virus: Making the Best of a Bad Virus. Journal of Virology 81, 17: 8853-8867.

    Umberto VG, Paolo G, Antonio DV, Giovanni G and Antonio P. (2014). Hepatitis C virus and metabolic disorder interactions towards liver damage and atherosclerosis. World Journal of Gastroenterol 20, 11: 2825-2838.

    Yoshio A, Nobuyoshi S, Tomohisa N and Hiroshi A. (2015). Chronic hepatitis C virus infection and lipoprotein metabolism. World J Gastroenterol 21,36: 10299-10313.

    Younossi ZM, Elsheikh E, Stepanova M, Gerber L, Nader F, Stamm LM, Brainard DM and McHutchinson JG. Ledipasvir/sofosbuvir treatment of hepatitis C virus is associated with reduction in serum apolipoprotein levels. Journal of Viral Hepatitis 22: 977-982.

    下載圖示 校內:2021-09-01公開
    校外:2021-09-01公開
    QR CODE