簡易檢索 / 詳目顯示

研究生: 楊智銓
Yang, Chih-Chuan
論文名稱: 以五環素薄膜電晶體作為主要醇類感測器之應用及其機制
Applications and Sensing Mechanism of Pentacene-Based Thin Film Transistors for Primary Alcohol Analytes
指導教授: 王永和
Wang, Yeong-Her
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 89
中文關鍵詞: 五環素醇類感測器有機薄膜電晶體馬克思赫許方程式載子跳躍比
外文關鍵詞: pentacene, primary alcohol sensor, organic thin film transistor, March-Hush equation, hopping rate
相關次數: 點閱:108下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要探討以五環素薄膜電晶體作為主要醇類感測器之應用及其機制。利用電晶體以負載型式相連,在感測情況下負載會與濃度之趨勢線成0.98的相關係數,表示具有高度線性相依,且靈敏度會隨通道長度提高而提升。
    將感測前後之電晶體進行相互比較與討論。電晶體在感測後之載子移動率會有明顯的下降。在感測後之載子移動率從5.64 cm2s-1V-1,在九公升的容器中注入三毫升感測物的情況下,下降到0.77 cm2s-1V-1。
    在驗證部分,利用偏極化拉曼光譜儀與紫外光/可見光光譜儀來進行分析後,發現有機薄膜電晶體在感測後之載子傳輸,不僅受到分子耦合作用力下降影響,亦須考量重組能在感測之後所造成影響;而隨著分子耦合作用力下降與重組能的上升,所造成之載子跳躍率變化,與實驗中電晶體載子移動率的變化有高達0.9887的相關係數,說明了載子跳躍率與電晶體載子移動率的直接關係。且此實驗提供一個全新的模型,當有機半導體以載子跳躍傳輸且受到晶粒邊界的影響,可利用此模型計算出載子跳躍率來預測電晶體載子移動率。
    最後本實驗並討論不同蒸氣壓下的醇類感測,如1-pentanol,證明本電晶體能應用於主要醇類感測。

    Applications and sensing mechanism of pentacene-based thin film transistors for primary alcohol analytes are fully discussed in this thesis. First, the resistances of sensors using load-connected transistors have high linearity with concentration of analytes, which have high correlation coefficient up to 0.98. Furthermore, the sensitivity increases with longer channel length for more grain boundaries in it.
    The mobility of transistors also has obvious decrease with different concentration of analytes. After injecting 3 ml propanol in the chamber of 9 liter, mobility decreases from 5.64 to 0.77 cm2s-1V-1. To clearly quantify the hopping rate affected by analytes stacked in grain boundaries, the intermolecular coupling (transfer integral) effect is verified through theoretical calculation of Davydov Splitting from Raman spectra and experimental results of ultraviolet/visible light (UV/VIS) spectra measurement.
    The hopping rate can be calculated from those measurement results by using Marcus-Hush equation. The model of Marcus-Hush equation provided well explanation in the mobility variation of transistors, and high correlation coefficient of 0.9887 was also calculated, indicating that this model can be applied in predicting the mobility trend while carriers in active layer via hopping and are influenced by grain boundaries.
    Finally, pentacene-based thin film transistors are also measured with different vaporizations of analytes, such as 1-pentanol, exhibiting suitable detectors for primary alcohol analytes.

    摘要…...... I Abstract.. II 致謝…...... IV Contents V Figure Captions VIII Table Captions X Chapter 1 Introduction 1 1-1 Introduction to the development of OTFTs 1 1-2 Advantages of organic thin film transistors 1 1-3 Motivation 2 1-4 Organization 3 Chapter 2 Organic Semiconductor 4 2-1 Organic semiconductor materials 4 2-2 Mechanisms of charge transport in organic semiconductor 6 2-2-1 Formation of π electrons and π system 6 2-2-2 Charge transportations 7 2-2-3 Grain in charge transportations 9 2-2-4 Growth mode of pentacene thin film 9 2-3 Marcus-Hush equation 11 2-4 Reorganization energy 12 2-5 Intermolecular coupling 14 Chapter 3 Principle of OTFT and sensor device 15 3-1 Thin-film transistor architecture 15 3-2 Operating mode 17 3-3 Important parameters of OTFTs 19 3-3-1 Field-effect mobility 19 3-3-2 Threshold Voltage 20 3-3-3 Subthreshold swing 21 3-3-4 On/Off current ratio 21 3-4 Important parameters of sensors 24 3-4-1 Output signal of resistance 24 3-4-2 Least squares method 26 3-4-3 Correlation coefficient 26 3-4-4 Sensitivity of OTFT sensors 27 Chapter 4 Experiment 28 4-1 Experimental materials 28 4-2 Equipments of fabrication and sensing process 34 4-2-1 Sputter, Physical vapor deposition (PVD) 34 4-2-2 Thermal evaporator 34 4-2-3 Spin coater 35 4-2-4 Gas sensing system 35 4-3 Solution preparation 38 4-4 Experimental procedure 38 4-4-1 Substrate cleaning 38 4-4-2 Gate electrode 39 4-4-3 Insulator layer 39 4-4-4 Active layer 40 4-4-5 Source and Drain electrodes 40 4-5 Sensing procedure 45 4-6 Measurement System 48 4-6-1 Current-Voltage (I-V) measurement 48 4-6-2 Capacitance-Voltage (C-V) measurement 48 4-6-3 Atomic Force Microscope (AFM) 48 4-6-4 Microscopes Raman Spectrometer 49 4-6-5 Ultraviolet and Visible (UV/VIS) Spectrophotometer 49 Chapter 5 Results and Discussion 52 5-1 Chemical compositional analysis and electrical properties 52 5-1-1 Surface morphology 52 5-1-2 MIM measurement 54 5-1-3 Analyses of pentacene moleculars 56 5-1-4 I-V measurement 57 5-2 Concentration v.s. Resistivity 59 5-2-1 Different channel length 59 5-2-2 Correlation coefficient 62 5-2-3 Reacting and recovery time 64 5-2-4 Mechanisms 66 5-3 Chemical sensing analysis 68 5-3-1 Analytes treatments effect mobility in OTFTs 68 5-3-2 Intermolecular coupling 70 5-3-3 Reorganization energy 74 5-3-4 Hopping rate 78 5-3-5 Summary 81 5-4 Different saturated vapor pressures for primary alcohol analytes 82 Chapter 6 Conclusions and Future Works 84 6-1 Conclusions 84 6-2 Future Works 85 References 86

    [1] A. Tsumura, H. Koezuka, and T. Ando, “Macromolecular electronic device: Field-effect transistor with a polythiophene thin film,” Applied Physics Letters, vol. 49, no. 18, pp. 1210-1212, 1986.
    [2] Z. T. Zhu, J. T. Mason, R. Dieckmann, and G. G. Malliaras, “Humidity sensors based on pentacene thin-film transistors,” Applied Physics Letters, vol. 81, no. 24, pp. 4643-4645, 2002.
    [3] L. Wang, D. Fine, and A. Dodabalapur, “Nanoscale chemical sensor based on organic thin-film transistors,” Applied Physics Letters, vol. 85, no. 26, pp. 6386-6388, 2004.
    [4] S. Ochiai, K. Palanisamy, S. Kannappan, and P.-K. Shin, “Pentacene active channel layers prepared by spin-coating and vacuum evaporation using soluble precursors for OFET applications,” ISRN Condensed Matter Physics, vol. 2012, pp. 1-7, 2012.
    [5] H. L. Cheng, Y. S. Mai, W. Y. Chou, L. R. Chang, and X. W. Liang, “Thickness-dependent structural evolutions and growth models in relation to carrier transport properties in polycrystalline pentacene thin films,” Advanced Functional Materials, vol. 17, no. 17, pp. 3639-3649, 2007.
    [6] M. E. Roberts, A. N. Sokolov, and Z. Bao, “Material and device considerations for organic thin-film transistor sensors,” Journal of Materials Chemistry, vol. 19, no. 21, pp. 3351-3363, 2009.
    [7] I. Kymissis, Organic Field Effect Transistors: Theory, Fabrication and Characterization: Springer Science+Business Media, LLC, 2009.
    [8] K. P. C. Vollhardt, and N. E. Schore, Organische Chemie: Herausgegeben von H. Butenschön: Wiley, 1995.
    [9] H. Klauk, Organic Electronics: Materials, Manufacturing, and Applications: Wiley, 2006.
    [10] C. Wöll, Physical and Chemical Aspects of Organic Electronics: Wiley, 2009.
    [11] M. Weis, K. Gmucová, V. Nádaždy, E. Majková, D. Haško, D. Taguchi, T. Manaka, and M. Iwamoto, “Grain boundary effect on charge transport in pentacene thin films,” Japanese Journal of Applied Physics, vol. 50, no. 4, pp. 04DK03, 2011.
    [12] T. W. Kelley, and C. D. Frisbie, “Gate voltage dependent resistance of a single organic semiconductor grain boundary,” The Journal of Physical Chemistry B, vol. 105, no. 20, pp. 4538-4540, 2001.
    [13] D. Knipp, R. A. Street, and A. R. Volkel, “Morphology and electronic transport of polycrystalline pentacene thin-film transistors,” Applied Physics Letters, vol. 82, no. 22, pp. 3907-3909, 2003.
    [14] C. Kim, A. Facchetti, and T. J. Marks, “Polymer gate dielectric surface viscoelasticity modulates pentacene transistor performance,” Science, vol. 318, no. 5847, pp. 76-80, October 5, 2007.
    [15] D. Guo, S. Entani, S. Ikeda, and K. Saiki, “Effect of UV/ozone treatment of the dielectric layer on the device performance of pentacene thin film transistors,” Chemical Physics Letters, vol. 429, no. 1–3, pp. 124-128, 2006.
    [16] M. Yoshida, S. Uemura, T. Kodzasa, T. Kamata, M. Matsuzawa, and T. Kawai, “Surface potential control of an insulator layer for the high performance organic FET,” Synthetic Metals, vol. 137, no. 1, pp. 967-968, 2003.
    [17] R. Ruiz, D. Choudhary, B. Nickel, T. Toccoli, K.-C. Chang, A. C. Mayer, P. Clancy, J. M. Blakely, R. L. Headrick, S. Iannotta, and G. G. Malliaras, “Pentacene thin film growth,” Chemistry of Materials, vol. 16, no. 23, pp. 4497-4508, 2004.
    [18] H. L. Cheng, W. Y. Chou, C. W. Kuo, Y. W. Wang, Y. S. Mai, F. C. Tang, and S. W. Chu, “Influence of electric field on microstructures of pentacene thin-films in field-effect transistors,” Advanced Functional Materials, vol. 18, no. 2, pp. 285-293, 2008.
    [19] Q. Qi, A. Yu, P. Jiang, and C. Jiang, “Enhancement of carrier mobility in pentacene thin-film transistor on SiO2 by controlling the initial film growth modes,” Applied Surface Science, vol. 255, no. 9, pp. 5096-5099, 2009.
    [20] C. Y. Wei, S. H. Kuo, Y. M. Hung, W. C. Huang, F. Adriyanto, and Y. H. Wang, “High-mobility pentacene-based thin-film transistors with a solution-processed barium titanate insulator,” IEEE Electron Device Letters, vol. 32, no. 1, pp. 90-92, 2011.
    [21] S. H. Wen, A. Li, J. Song, W. Q. Deng, K. L. Han, and W. A. Goddard, “First-principles investigation of anistropic hole mobilities in organic semiconductors,” J Phys Chem B, vol. 113, no. 26, pp. 8813-9, 2009.
    [22] Z. Bao, and J. Locklin, Organic Field-Effect Transistors: Taylor & Francis, 2007.
    [23] H. L. Cheng, X. W. Liang, W. Y. Chou, Y. S. Mai, C. Y. Yang, L. R. Chang, and F. C. Tang, “Raman spectroscopy applied to reveal polycrystalline grain structures and carrier transport properties of organic semiconductor films: Application to pentacene-based organic transistors,” Organic Electronics, vol. 10, no. 2, pp. 289-298, 2009.
    [24] H. Yamane, S. Nagamatsu, H. Fukagawa, S. Kera, R. Friedlein, K. K. Okudaira, and N. Ueno, “ Hole-vibration coupling of the highest occupied state in pentacene thin films,” Physical Review B, vol. 72, no. 15, pp. 153412, 2005.
    [25] T. Grasser, G. Meller, and A. Baldo, Organic Electronics: Springer, 2009.
    [26] H. L. Cheng, W. Y. Chou, C. W. Kuo, F. C. Tang, and Y. W. Wang, “Electric field-induced structural changes in pentacene-based organic thin-film transistors studied by in situ micro-Raman spectroscopy,” Applied Physics Letters, vol. 88, no. 16, pp. 161918, 2006.
    [27] D. Gupta, M. Katiyar, and D. Gupta, “An analysis of the difference in behavior of top and bottom contact organic thin film transistors using device simulation,” Organic Electronics, vol. 10, no. 5, pp. 775-784, 2009.
    [28] W. Gu, W. Jin, B. Wei, J. Zhang, and J. Wang, “High-performance organic field-effect transistors based on copper/copper sulphide bilayer source-drain electrodes,” Applied Physics Letters, vol. 97, no. 24, pp. 243303, 2010.
    [29] W. S. Wong, and A. Salleo, Flexible Electronics: Materials and Applications: Springer London, Limited, 2009.
    [30] C. Y. Wei, W. C. Huang, C. K. Yang, Y. Y. Chang, and Y. H. Wang, “Low-operating-voltage pentacene-based transistors and inverters with solution-processed barium zirconate titanate insulators,” IEEE Electron Device Letters, vol. 32, no. 12, pp. 1755-1757, 2011.
    [31] R. A. Bissell, K. C. Persaud, and P. Travers, “The influence of non-specific molecular partitioning of analytes on the electrical responses of conducting organic polymer gas sensors,” Physical Chemistry Chemical Physics, vol. 4, no. 14, pp. 3482-3490, 2002.
    [32] T. Cahyadi, J. N. Tey, S. G. Mhaisalkar, F. Boey, V. R. Rao, R. Lal, Z. H. Huang, G. J. Qi, Z.-K. Chen, and C. M. Ng, “Investigations of enhanced device characteristics in pentacene-based field effect transistors with sol-gel interfacial layer,” Applied Physics Letters, vol. 90, no. 12, pp. 122112, 2007.
    [33] Y. C. Li, Y. J. Lin, H. J. Yeh, T. C. Wen, L. M. Huang, Y. K. Chen, and Y. H. Wang, “Ion-modulated electrical conduction in polyaniline-based field-effect transistors,” Applied Physics Letters, vol. 92, no. 9, pp. 093508, 2008.
    [34] H. Zhao, G. Dong, L. Duan, L. Wang, and Y. Qiu, “Co-actions of ambient pressure and gas molecular adsorption on the carriers’ Transport in Polycrystalline Pentacene Thin-Film Transistors,” The Journal of Physical Chemistry C, vol. 117, no. 1, pp. 58-63, 2013.
    [35] Y. Qiu, Y. Hu, G. Dong, L. Wang, J. Xie, and Y. Ma, “H2O effect on the stability of organic thin-film field-effect transistors,” Applied Physics Letters, vol. 83, no. 8, pp. 1644-1646, 2003.
    [36] R. Foster, Organic charge-transfer complexes: Academic Press, 1969.
    [37] R. He, I. Dujovne, L. Chen, Q. Miao, C. F. Hirjibehedin, A. Pinczuk, C. Nuckolls, C. Kloc, and A. Ron, “Resonant raman scattering in nanoscale pentacene films,” Applied Physics Letters, vol. 84, no. 6, pp. 987, 2004.
    [38] T. Jentzsch, H. J. Juepner, K. W. Brzezinka, and A. Lau, “Efficiency of optical second harmonic generation from pentacene films of different morphology and structure,” Thin Solid Films, vol. 315, no. 1–2, pp. 273-280, 1998.
    [39] S. Guha, J. Rice, Y. Yau, C. Martin, M. Chandrasekhar, H. Chandrasekhar, R. Guentner, P. Scanduicci de Freitas, and U. Scherf, “Temperature-dependent photoluminescence of organic semiconductors with varying backbone conformation,” Physical Review B, vol. 67, no. 12, 2003.
    [40] M. Kytka, L. Gisslen, A. Gerlach, U. Heinemeyer, J. KovaC, R. Scholz, and F. Schreiber, “Optical spectra obtained from amorphous films of rubrene: Evidence for predominance of twisted isomer,” The Journal of Chemical Physics, vol. 130, no. 21, pp. 214507, 2009.

    下載圖示 校內:2018-08-07公開
    校外:2018-08-07公開
    QR CODE