簡易檢索 / 詳目顯示

研究生: 林琨翔
Lin, Kun-Hsiang
論文名稱: 產品線設計最佳化模式之開發與應用
Development and Application of Optimization Models for Product Line Design
指導教授: 施勵行
Shih, Li-Hsing
學位類別: 博士
Doctor
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 148
中文關鍵詞: 筆記型電腦產品線設計聯合分析法消費者偏好綠色技術產品線翻新模糊理論
外文關鍵詞: Notebook computer, Product line design, Conjoint analysis, Fuzzy theory, Preferences, Product line rollover
相關次數: 點閱:92下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 現今的消費市場處於高度競爭s中,判斷產品線該含括哪些產品是企業能否生存的重要因素。其中產品線設計最佳化問題是在消費者將選擇能為其帶來最大效益的產品之假設下,以吸引最多消費者選購為目標,進行產品線延伸、全新或翻新設計。消費者只在新產品具有更高效益的情況下,才會由原本偏好的產品轉而選購新產品線內的產品。產品線設計最佳化模式是個廣泛被應用的方法之一,此模式是聯合分析法(conjoint analysis)架構下的0、1整數規劃問題。過程中以聯合分析法直接評估消費者對產品各屬性水準的偏好效用值,再以此為基礎透過產品線設計最佳化模式找出適當的新產品線方案。本研究開發兩種符合企業實際需求之產品線設計最佳化模式,並以台灣筆記型電腦產業面對新綠色技術而需設計或翻新產品線為例。其中產品線同步翻新最佳化模式針對具備完整產品線的公司,克服以往必須分兩階段進行新進產品設計與退場產品選擇之限制,建構能同步翻新的產品線翻新最佳化模式。由於考慮了各產品在吸引消費者上的互補性,因此得到優於以往兩階段模式之結果。另一為模糊產品線設計最佳化模式,將消費者面對新產品時的偏好不確定性納入考量,進行產品線延伸設計或全新設計。模糊理論(fuzzy theory)可以解決消費者不易給予新產品明確偏好評價的問題,此模式則將消費者的偏好不確定性適當地納入產品線最佳化設計的過程中,結果也發現具高度偏好不確定性的消費者會顯著地影響最終方案
    本研究的產品線同步翻新最佳化模式能考慮偏好新進產品與退場產品的消費者間之互補性,設計新進產品也同時評估那項產品該退出既有產品線,除了能同時決定整個產品翻新方案,得到的產品線翻新方案也優於以往需先決定退場產品或新進產品的兩階段模式。在模糊產品線設計最佳化模式中,本研究分別在模糊(Fuzzy)與明確(Crisp)偏好情境下求解最佳產品線延伸方案。由於模糊情境將偏好不確定性納入考量,因而以較嚴格的標準判斷消費者是否購買新產品,結果顯示具高度偏好不確定性的消費者容易因情境不同而做出不同的購買決策,進而造成兩種情境得到不一致的最佳產品線延伸方案。

    By the term “product line”, a line of substitute products is meant. For example, a product line can contain different models of notebook computers. The product line design optimization model (PLDOM) is to maximize the number of buyers who would choose one of the candidate items of the product line. It is assumed that buyers choose the product that gives them maximum utility. They switch from their current brand only if they receive more utility from a new product.
    In today’s highly competitive environment the determination of an optimal product line composition is very important for the survival of a firm. The PLDOM can be formulated within the conjoint analysis framework as a 0–1 integer programming problem. Conjoint analysis provides a methodology that links attributes directly to buyers’ preferences. This research develops two kinds of PLDOMs that are base on real market situations. First is for customers unfamiliar with new technologies, it is difficult to precisely appraise preferences for new products. This research proposes fuzzy PLDOM to take preference uncertainty into consideration. Second is for the companies with large and complete product line, they must plan a successful product line rollover scheme to launch new products and delete existing ones simultaneously. This research proposes product line rollover optimization model to reach this demand.
    In fuzzy PLDOM, Optimal schemes are obtained under Fuzzy and Crisp scenarios. The results show that customers with high preference uncertainty have different purchase decisions under above scenarios. The different purchase decisions lead to a great inconsistency between the optimal schemes. The Fuzzy scenario takes preference uncertainty into consideration and uses stricter standards to judge whether customers buy products with new technology. The product line rollover procedure of Proposed Model is achieved in one phase. The results show that Proposed Model can consider the complementarily between the product additions and deletions, which helps companies with complete product line to find better product line rollover schemes.

    目錄 摘要……………………………………………………….……………...…...I Abstract………………………………………………………….…………..II 致謝……………………………………………………………………....…III 目錄…………………………………………………………………….....…IV 圖目錄…………………………………………………………..………...VIII 表目錄……………………………………………………………………..…X 第一章 緒論…………………………….………………………………..…1 1.1 研究動機……………….…………………………………………….…2 1.2 研究目的…………….……………………………………………….…6 1.3 研究流程…………………………….……………………………….…8 第二章 文獻探討………………………………………………………….10 2.1 產品線設計最佳化模式……………………………...……………….10 2.1.1 產品線定義……………...………………………….………. …….10 2.1.2 產品與產品線設計………………………………………….……..11 2.1.3 產品線設計最佳化模式之發展…………………………….……..13 2.1.4 產品線翻新最佳化模式之發展………………………………...…17 2.2 聯合分析法 …………………………………………..………………19 2.2.1 聯合分析法之理論…………………………………….…………..19 2.2.2 聯合分析法在產品線設計最佳化之應用……………………...…21 2.2.3 聯合分析法之分析程序…………………………………………...25 2.2.4 模糊聯合分析法………………………………………….………..34 2.3 基因演算法……………………………………………………….…...36 2.3.1 基因演算法之理論………………………………………….……..36 2.3.2 基因演算法在產品線設計最佳化之應用………..………….……38 2.3.3 基因演算法之分析程序………………………….………………..39 2.4 筆記型電腦之產品線特性與綠色技術………………..………….… 47 2.4.1 筆記型電腦之產品線特性…………………….…………..………47 2.4.2 筆記型電腦之綠色技術………………………………….……..…49 第三章 產品線同步翻新最佳化模式……………….……..…………..…55 3.1 消費市場之變化與問題………………………………….………...…55 3.2 產品線同步翻新最佳化模式建構……………………….………...…57 3.2.1 模式架構………………………………………………………...…57 3.2.2 消費者偏好效用分析…………………………………………...…59 3.2.3 參數定義與資料轉換…………………………………………...…59 3.2.4 0、1整數規劃模式…………………………………………......…61 3.3 基因演算法求解……..…………………………………...………...…65 3.3.1 產品線同步翻新最佳化模式之基因演算法求解…………...……65 3.3.2 求解程序……………………………………………………...……68 3.4 案例分析……………………………………………………...…….…71 3.4.1 屬性、水準選擇………………………………………………….…71 3.4.2 問卷設計與發放……………………….………….…………….…74 3.5 結果分析與比較…………………………………..……….………...…75 3.5.1 成份效用值與相對重要性…………………………….…………..75 3.5.2 案例公司既有產品線分析………………………….…..…………78 3.5.3 兩階段與同步翻新模式的分析過程比較…....………….……..…79 3.5.4 兩階段與同步翻新模式的最佳方案比較..…………..……...……85 3.6 小結…………………………………..……………………………..…88 第四章 模糊產品線設計最佳化模式……………………………….……89 4.1 消費市場之變化與問題…………………..…………………….….…89 4.2 模糊產品線設計最佳化模式之建構……….……………..……….....91 4.2.1 模式架構…………………………………………..………….……91 4.2.2 消費者偏好效用分析…………………………………………...…93 4.2.3 參數定義與資料轉換……………………………..………….……98 4.2.4 0、1整數規劃模式……………………….………………………102 4.3 基因演算法求解…………………………………………….…..…...106 4.3.1 模糊產品線設計最佳化模式之基因演算法求解…………...…..106 4.3.2 求解程序…………………………………………………….....…108 4.4 案例分析…………………………………...…...………..……………111 4.4.1 屬性、水準選擇……….……………………….…………………111 4.4.2 問卷設計與發放………..………………………..…………….…111 4.5 結果分析與比較……………………………………...…………...…113 4.5.1 模糊成份效用值與相對重要性……………………………….…113 4.5.2 消費者之偏好不確定性…………………………….…............…117 4.5.3 不同情境下的產品線設計與市場佔有率估計……….............…119 4.5.4 偏好不確定性對產品線設計最佳化方案之影響…..………...…120 4.5.5 不同情境下之產品線設計最佳化方案…………..………...……124 4.6 小結……...……………………………………………….………..…127 第五章 結論與建議…………………………………….…………..……128 5.1 結論……………………………………………………….…..…...…128 5.2 未來研究方向………………………………………………..………131 參考文獻…………………………………………………………...........…132 附錄I 第三章符號表………………………………………….............…140 附錄II 第四章符號表……………………..………………….............…142 附錄III 作者簡介……………………………...……………….............…145

    英文部分
    1. Aaker, D.A., 1991, Managing Brand Equity: Capitalizing on the Value of a Brand Name, The Free Press.
    2. Aarts, E.H.L., Korst, J.H.M. and van Laarhoven, P.J.M., 1997, Simulated annealing. In E. Aarts, & J. Lenstra (Eds), Local search in combinatorial optimization, pp. 91-120.
    3. Alexouda, G. and Paparrizos, K., 1999, A genetic algorithm approach to the buyer’s welfare problem of product line design: An comparative computational study, Yugoslav Journal of Operations Research, Vol. 9, NO. 2, pp. 165-178.
    4. Alexouda, G. and Paparrizos, K., 2001, A genetic algorithm approach to the product line design problem using the seller’s return criterion: An extensive comparative computational study. European Journal of Operational Research, Vol. 134, pp. 165-178.
    5. Alexouda, G., 2002, An evolutionary algorithm based method for the product line design using the share of choices criterion, 2nd Hellenic conf. on Al, pp. 321-330.
    6. Alexouda, G., 2004, An evolutionary algorithm approach to the share of choices problem in the product line design, Computer & Operations Research, Vol. 31, pp. 2215-2229.
    7. Alexouda, G., 2005, An user-friendly marketing decision support system for the product line design using evolutionary algorithms, Decision Support Systems, Vol. 38, pp. 495-509.
    8. Auty, S., 1995, Using Conjoint Analysis in Industrial Marketing, Industrial Marketing Management, Vol. 24, pp. 191-206.
    9. Avlonitis, G.J., Hart, S.J. and Tzokas, N.X., 2003, An analysis of product deletion scenarios, Journal of Product Innovation Management, Vol. 17, No. 1, pp. 41-56.
    10. Balakrishnan, P.V. and Jacob, V.S., 1996, Genetic algorithms for product design, Management Science, Vol. 42, pp. 1105-1117.
    11. Balakrishnan, P.V., Gupta, R. and Jacob, V.S., 2004, Development of hybrid genetic algorithms for product line designs, IEEE Transactions on Systems, Man, and Cybernetics, Vol. 34, No. 1, pp. 468-483.
    12. Balakrishnan, P.V., Gupta, R. and Jacob, V.S., 2006, An investigation of mating and population maintenance strategies in hybrid genetic heuristics for product line designs, Computers & Operations Research, Vol. 33, pp. 639-659.
    13. Belloni, A., Freund, R., Selve, M. and Simester, D., 2008, Optimal product line design: efficient methods and comparisons, Management Science, Vol. 54, No. 9, pp. 1544-1552.
    14. Bhattacharyya, M., 2002, Fuzzy conjoint analysis. Soft methods in Probability, Statistics and Data analysis, Springer Verlag, pp. 255-265.
    15. Billington, C., Lee, H.L. and Tang, C.S., 1998, Successful strategies for product rollovers, Sloan Management Review, Vol. 39, No. 3, pp. 23–30.
    16. Buckley, J.J. and Chanas, S., 1989, A fast method of ranking alternatives using fuzzy numbers, Fuzzy Sets and Systems, Vol. 30, pp. 337-338.
    17. Carmone, F.J., Green, P.E. and Jain, A.K., 1978, Robustness of conjoint analysis: some monte carlo results, Journal of Marketing Research, Vol. 15, pp. 300-303.
    18. Carmone, F.J. and Green, P.E., 1981, Model misspecification in multiattribute parameter estimation, Journal of Marketing Research, Vol. 18, pp. 87-93.
    19. Cattin, P. and Wittink, D.R., 1982, Commercial use of conjoint analysis : a survey, Journal of Marketing, Vol. 46, pp. 44-53.
    20. Choi, S., DeSarbo, C. and DeSarbo, W.S., 1994, A conjoint-based product designing procedure for incorporating price competition, Journal of Product Innovation Management, Vol. 11, pp. 451–59.
    21. Cooper, R.G. and Kleinschmidt, E.J., 1987, New products: what separates winners from losers?, Journal of Product Innovation Management, Vol. 4, pp. 169–184.
    22. Crawford, C.M., 1979, New product failure rates-facts and fallacies, Research Management, September, pp. 9-13.
    23. Darby, K., Batte, M.T., Ernst, S. and Roe, B., 2008, Decomposing Local: A Conjoint Analysis of Locally Produced Foods, American Journal of Agricultural Economics, Vol. 90, No. 5, pp. 476-486.
    24. Ding, M., 2007, An Incentive-Aligned Mechanism for Conjoint Analysis, Journal of Marketing Research, Vol. 44, Iss. 2, pp. 214-223.
    25. Dobson, G. and Kalish, S., 1988, Positioning and pricing a product line, Marketing Science, Vol. 7, No. 2, pp. 107-125.
    26. Dobson, G. and Kalish, S., 1993, Heuristics for pricing and positioning a product-line using conjoint and cost data, Management Science, Vol. 39, No. 2, pp. 160-175.
    27. Douglas, C.J. and Green, P.E., 1995, Psychometric methods in marketing research: part I, conjoint analysis, Journal of Marketing Research, Vol. 32, pp. 385-391.
    28. Dolgui, A. and Ihnatsenka, I., Branch and bound algorithm for a transfer line design problem: Stations with sequentially activated multi-spindle heads, European Journal of Operational Research, Vol. 197, Iss. 3, pp. 1119-1132.
    29. Fonseca, D.J., Shishoo, S. and Williams, K., 2007, A genetic algorithm approach to joint optimization for product line and ordering quantity, Research Journal of Applied Sciences, Vol. 2, No. 1, pp. 43-47.
    30. FUJITSU, 2005, Sustainability report.
    31. Greenley, G. and Bayus. B., 1994, A comparative study of product launch and elimination decision in UK and US companies, European Journal of Marketing, Vol. 28, pp. 5–29.
    32. Green, P.E. and Krieger, A.M., 1985, Models and heuristics for product line selection, Marketing science, Vol. 4, No. 1, pp. 1-19.
    33. Green, P.E., Krieger, A.M. and Zelnio, R.N., 1989, A componential segmentation model with optimal design features, Decision Sciences, Vol. 20, No. 2, pp. 221-238.
    34. Green, P.E. and Krieger, A.M., 1991, Product design strategies for target market positioning, Journal of Product Innovation Management, Vol. 8, pp. 189–202.
    35. Green, P.E. and Krieger, A.M., 1993, Conjoint analysis with product-positioning applications, in Eliashberg, J. and Lilien, G.L. (Eds), Marketing, North Holland, Amsterdam, pp. 467-515.
    36. Green, P.E. and Rao, V.R., 1971, Conjoint measurement for quantifying judgmental data, Journal of Marketing Research, Vol. 8, pp. 355-363.
    37. Green, P.E. and Srinivasan, V., 1978, Conjoint analysis in consumer research: issues and outlook, Journal of Consumer Research, Vol. 5, pp. 103-123.
    38. Green, P.E. and Srinivasan, V., 1990, Conjoint analysis in marketing: new developments with implications for research and practice, Journal of Marketing, Vol. 54, No. 4, pp. 3-19.
    39. Green, P.E. and Wind, Y.J., 1973, Multiattribute decisions in marketing: a measurement approach, Hinsdale, IL: The Dryden Press.
    40. Green, P.E. and Wind, Y.J., 1975, New way to measure consumers’ judgments, Harvard Business Review, July-August, pp. 107-117.
    41. Gross, R.A. and Kalra, B., 2002, Biodegradable polymers for the environment. Science, Vol. 297, pp. 803-807.
    42. Gruenwald, G., 1992, New product development, 2nd ed., NTC Business Books, Illinois.
    43. Guiltinan, J.P., 1993, A strategic framework for assessing product line additions, The Journal Of Product Innovation Management, Vol. 10, No. 2, pp. 136-147.
    44. Hart, S.J., 1989, Product deletion and the effects of strategy, European Journal of Marketing, Vol. 23, No. 10, pp. 6-17.
    45. Hair, T.F.J., Anderson, R.E., Tatham, R.L. and Black, W.C., 1998, Multivariate data aqnalysis, Prentice-Hall International, Inc., USA.
    46. Holland, J.H., 1975, Adaptation in natural and artificial systems, Ann Arbor MI: University of Michigan Press
    47. Huber, J. and Fiedler, J.A., 1996, Comparing perceptual mapping and conjoint analysis: the political landscape, Sawtooth Software Conference Proceedings.
    48. Jiao, J.R., Zhang, Y. and Wang, Y., 2007, A generic genetic algorithm for product family design, Journal of Intelligent Manufacturing, Vol. 18, No. 2, pp. 233-247.
    49. Kadiyali, V., Vilcassim, N. and Chintagunta, P., 1999, Product line extensions and competitive market interactions: An empirical analysis, Journal of Econometrics, Vol. 89, pp. 339-363.
    50. Kagaya, S. and Shinada, C., 2002, An use of conjoint analysis with fuzzy regression for evaluation of alternatives of urban transportation schemes. The 13th Mini-EURO Conference Handling Uncertainty in the Analysis of Traffic and Transportation Systems.
    51. Kang, Y., Lee, W. and Suh, D.H., 2003, Solid polymer electrolytes based on cross linked-polysiloxane-g-oligo (Ethylene Oxide): Ionic conductivity and electrochemical properties, Journal of Power Sources, Vol. 199, pp. 448-453.
    52. Kohli, R. and Krishnamurti, R., 1987, A heuristic approach to product design, Management Science, Vol.33, pp. 1123–1133.
    53. Kohli, R. and Sukumar, R., 1990, Heuristics for product-line design using conjoint analysis, Management Science, Vol. 36, No. 12, pp. 1464-1477.
    54. Kohli, R. and Mahajan, V., 1991, A reservation-price model of optimal pricing of multiattribute products in conjoint analysis, Journal of Marketing Research, Vol. 28, No. 3, pp. 347-354.
    55. Kotler, P. and Armstrong, G., 1994, Principles of Marketing, Prentice-Hall International, Inc.
    56. Kotler, P. and Gary, A., 1997, Principles of marketing, 7th ed, Prentice-Hall. International, Inc.
    57. Krieger, A.M., Green, P.E. and Wind, Y.J., 2004, Adventures in conjoint analysis: A practitioner’s guide to trade-off modeling and applications, Monograph, University of Pennsylvania.
    58. Krishnan, V. and Ulrich, K., 2001, Product development decisions: A review of the literature. Management Science, Vol. 47, No. 1, pp. 1–21.
    59. Kucher, E. and Hilleke, K., 1993, Value pricing through conjoint measurement: a practical approach, European Management Journal, Vol. 11, No. 3, pp.283-290.
    60. Lee, M. and Lou, Y.C., 1995, Consumer reliance on intrinsic and extrinsic cues in product evaluations: a conjoint approach, Journal of Applied Business Research, Vol. 12, pp. 21-28.
    61. Li, H. and Azarm, S., 2000, Product design delection under uncertainty and with competitive advantage, Journal of Mechanical Design, Vol. 122, pp. 411-418.
    62. Li, H. and Azarm, S., 2002, An approach for product line design selection under uncertainty and competition, Journal of Mechanical Design, Vol. 124, pp. 385-392.
    63. Lilien, G., Kotler, P. and Moorthy, S., 1992, Marketing Models, Englewood Cliffs: Prentice-Hall, Chapter 10.
    64. Lim, W.S. and Tang, C.S., 2006, Production, Manufacturing and Logistics: Optimal product rollover strategies, European Journal of Operational Research, Vol. 174, pp. 905-922.
    65. Luce, R.D. and Tukey, J.W., 1964, Simultaneous conjoint measurement: a new type of fundamental measurement, Journal of Mathematical Psychology, Vol. 1, pp. 1-27.
    66. Mason, C.H. and Milne, G.R., 1994, An approach for indentifying cannibalization within product line extension and multi-brand strategies, Journal of Business Research, Vol. 33, pp. 163-170.
    67. Masuda, Y., Nakayama, M. and Wakihara, M., 2007, Fabrication of all solid-state lithium polymer secondary batteries using PEG-borate/aluminate ester as plasticizer for polymer electrolyte, Solid State Ionics, Vol. 178, pp. 981-986.
    68. McBride, R.D. and Zufryden, F.S., 1988, An integer programming approach to the optimal product line selection problem, Marketing science, Vol. 7, No. 2, pp. 126-140.
    69. Mo, j.h., Huang, m. and Wang, x.w., 2007, Optimal Design of the Real-Time Production Control System for a General Single-Product Assembly Line Based on Fuzzy Logic Control, Genetic Algorithm and Simulation, Fuzzy Systems and Knowledge Discovery, Vol. 4, pp. 591-597.
    70. Moore, W.L., Louviere, J.J. and Verma, R., 1999, Using conjoint analysis to help design product platforms, Journal of Product Innovation Management, Vol. 16, lss. 1, pp. 27–39.
    71. Nair, S.K., Thakur, L.S. and Wen, K.W., 1995, Near optimal solutions for product line design and selection: Beam search heuristics, Management Science, Vol. 41, No. 5, pp. 767-785.
    72. Ong, F.S., Kitchen, P.J. and Chew, S.S., Marketing a consumer durable brand in Malaysia: a conjoint analysis and market simulation, Journal of Consumer Marketing, Vol. 27, Iss. 6, pp. 507-515
    73. Page, A.L. and Rosenbaum, H.F., 1987, Redesigning product lines with conjoint analysis, how sunbeam does It, Journal of Product Innovation Management, Vol. 4, pp. 120–37.
    74. Pasandideh, S.H.R. and Niaki S.T.A., 2008, A genetic algorithm approach to optimize a multi-products EPQ model with discrete delivery orders and constrained space, Applied Mathematics and Computation, Vol. 198, pp. 506-514.
    75. Sapède, C. and Girod, I., 2002, Willingness of adults in europe to pay for a new vaccine: the application of discrete choice-based conjoint analysis, International Journal of Market Research, Vol. 44, Quarter 4, pp.463-490.
    76. Saunders, J. and Jobber, D., 1994, Product replacement: Strategies for simultaneous product deletion and launch, Journal of Product Innovation Management, Vol. 11, pp. 433-450.
    77. Segal, M.N., 1982, Reliability of Conjoint Analysis: Contrasting Data Collection Procedures, Journal of Marketing Research, Vol. 19, Feb, pp. 139-143.
    78. Shi, L., Olafsson, S. and Chen, Q., 2001, An optimization framework for product design, Management Science, Vol. 47, No. 12, pp. 1681-1692.
    79. Shocker, A.D. and Srinivasan, V., 1974, A consumer-based methodology for the identification of new product ideas. Management Science, Vol. 20, No. 6, pp. 921-937.
    80. Steckel, J.H., DeSarbo, W.S. and Mahajan, V., 1991, On the creation of acceptable conjoint analysis experimental design, Decision Science, Vol. 22, pp. 435-442.
    81. Steiner, W, and Hruschka, H., 2003, Genetic algorithms for product design: How well do they really work? Internation Journal of Market Research, Vol. 45, No. 2, pp. 229-240.
    82. Tanaka, H., Uejima, S. and Asia, K., 1982, Linear regression analysis with Fuzzy model, IEEE Transactions on Systems, Man, and Cybernetics, Vol. 12, No. 6, pp. 903–907.
    83. Tse, A.C.B., 2001, How much more are consumers willing to pay for a higher level of service? a preliminary survey, Journal of Services Marketing, Vol. 15, No. 1, pp. 11-17.
    84. Urban, G.L. and Hauser, J.R., 1993, Design and marketing of new Products, Prentice-Hall.
    85. Vavra, T.G., Green P.E. and Krieger, A.M., 1999, Evaluating EZPass, Marketing Research, Vol. 11, Iss. 2, pp. 4-16.
    86. Vriens, M., Loosschilder, G.H., Rosenbergen, E. and Wittink, D.R., 1998, Verbal versus realistic pictorial representations in conjoint analysis with design attributes, Journal of Product Innovation Management, Vol. 15, pp. 455–67.
    87. Weiner, J., 1994, Consumer electronics marketer uses a conjoint approach to configure its new product and set the right price, Marketing Research, Vol. 6, Iss. 3, pp. 6-11.
    88. Wilson, L.O. and Norton, J.A., 1989, Optimal entry timing for a product line extension, Marketing science, Vol. 8, No. 1, pp. 1-17.
    89. Wind, Y., Green, P.E., Shifflet, D. and Marsha, S., 1989, Courtyard by marriott: designing a hotel facility with consumer-based marketing models, Interfaces, Vol. 19, No. 1, pp. 25-47.
    90. Wittink, D.R. and Cattin, P., 1989, Commercial use of conjoint analysis: an update, Journal of Marketing, Vol. 53, pp. 91-96.
    91. Wittink, D.R., Vriens, M. and Burhenne, W., 1994, Commercial use of conjoint analysis in Europe: results and critical reflections, International Journal of Research in Marketing, Vol. 11, pp. 41-52.
    92. Wu, B. and Tseng, N.F., 2002, A new approach to fuzzy regression models with application business cycle analysis, Fuzzy Sets and Systems, Vol. 130, No. 1, pp. 33-42.
    93. Zufryden, F.S., 1977, A composite heterogeneous model of brand choice and purchase timing behavior, Management Science, Vol. 30, No. 2, pp. 121-136.
    94. Zufryden, F.S., 1979, ZIPMAP—A zero-one integer programming model for market segmentation and product positioning, The Journal of the Operational Research Society, Vol. 30, No. 1, pp. 63-70.
    中文部份
    1. 王昭傑,「消費者對水果醋屬性偏好之研究-聯合分析法之應用」,屏東科技大學農企業管理所碩士論文,2001。
    2. 周文賢、張欽富,「聯合分析在產品設計之應用」,華泰書局,2000。
    3. 林琨翔、施勵行,「電子業綠色產品策略及其市場競爭分析」,永續產業發展,第52期,第40~47頁,2010。
    4. 周亦君,「消費者對綠色汽車之偏好結構及願付價格研究」,國立成功大學資源工程研究所碩士論文,2006。
    5. 連敏秀,「聯合分析法應用於市場區隔中最佳產品組合之研究-以行動電話為例」,國立成功大學統計學研究所碩士論文,2004。
    6. 黃璋如,「消費者對有機農產品屬性偏好之研究」,行政院農業委員會補助計畫研究報告,1999。
    7. 張勤昌,「聯合分析應用於金控後銀行顧客知覺與偏好之研究」,國立成功大學統計學研究所碩士論文,2003。
    8. 劉家偉,「聯合分析在產品偏好研究上之應用—以筆記型電腦為例」,國立台灣大學國際企業學研究所碩士論文,2005。

    下載圖示 校內:2016-02-17公開
    校外:2016-02-17公開
    QR CODE