簡易檢索 / 詳目顯示

研究生: 陳衍佑
Chen, Yen-Yu
論文名稱: 評估奈米聚苯乙烯結合重金屬對斑馬魚胚胎魚鰾發育的毒性及機制
Evaluating the Toxicity and Mechanisms of Polystyrene Nanoplastics Combined with Heavy Metals on Swim Bladder Development in Zebrafish Embryos
指導教授: 王應然
Wang, Ying-Jan
學位類別: 碩士
Master
系所名稱: 醫學院 - 環境醫學研究所
Department of Environmental and Occupational Health
論文出版年: 2026
畢業學年度: 114
語文別: 中文
論文頁數: 88
中文關鍵詞: 奈米塑膠重金屬斑馬魚胚胎魚鰾發育
外文關鍵詞: Nanoplastics, Heavy metals, Zebrafish embryos, Swim bladder development
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,全球塑膠使用量與工業排放量持續攀升,使微/奈米塑膠(MP/NPs)與重金屬成為水域生態中最具代表性的複合型污染物,塑膠在經紫外線、機械磨損與化學老化過程逐漸降解成微/奈米尺寸,其粒徑極小、表面積高、可穿透生物屏障,更可能吸附環境中其他污染物,使其毒性大幅改變;而重金屬如六價鉻(Cr⁶⁺)與銅離子(Cu²⁺)廣泛來源於電鍍、電子製造等工業活動,不僅難以降解,亦具高度的急毒性及生物累積性,多篇研究指出奈米塑膠可能作為污染物載體,促使重金屬以更高效率進入水生生物體內,導致混合暴露之毒性遠高於單一污染物,然而現階段針對奈米塑膠與重金屬共同暴露在水生生物早期發育,尤其是魚鰾發育過程中的影響仍所知有限,因此深入理解奈米塑膠如何改變重金屬在胚胎中的毒性與作用機制,對於生態風險評估與環境監測策略具有重要意義。
    本研究依據OECD TG 236進行斑馬魚胚胎急毒性測試,評估PS NPs與K2Cr2O7、CuSO4·5H2O溶液共同暴露對胚胎早期發育之影響,將受精後的胚胎分別進行金屬單獨暴露以及共同暴露PS NPs 96小時,並評估死亡率、孵化率、體長、心率及畸形等發育端點,此外以DCFH-DA分析ROS生成量,並以 ICP-MS 測量胚胎內金屬累積,並評估兩者間是否存在協同作用,接著進一步針對魚鰾發育進行觀察,包括魚鰾缺失率、魚鰾尺寸、游泳行為及魚鰾發育相關基因表達。
    研究結果顯示,PS-NPs單獨暴露對胚胎影響有限,但與Cr⁶⁺或Cu²⁺共同暴露時,胚胎死亡率明顯上升,孵化率降低與體長、心率異常更為顯著,且多重畸形發生比例大幅增加,特別是魚鰾未充氣現象,共同暴露組的魚鰾缺失率顯著增加,魚鰾尺寸明顯縮小,且游泳距離與活動時間下降,基因表達量顯著下調,反映魚鰾功能已受到破壞;PS-NPs會使Cr⁶⁺與Cu²⁺在胚胎內累積量增加,證實PS NPs具提升重金屬生物可利用性的能力;同時發現共同暴露PS NPs後會使胚胎內的的ROS含量提高;最後協同作用分析證實PS-NPs與兩種重金屬之間存在明顯的協同作用。
    本研究證實奈米聚苯乙烯能顯著放大重金屬對斑馬魚胚胎的毒性,特別是在魚鰾這一高度敏感器官上表現最為明顯,說明魚鰾可作為評估奈米塑膠和重金屬交互作用的重要生物指標,並為未來水生環境中的混合污染風險評估提供重要科學基礎。

    Micro- and nanoplastics (MPs/NPs) and heavy metals have emerged as major co-occurring contaminants in aquatic environments due to increasing plastic usage and industrial discharge. Plastics progressively fragment into nanoscale particles with the ability to cross biological barriers, allowing them to adsorb pollutants and potentially alter their toxicity. Heavy metals such as hexavalent chromium (Cr⁶⁺) and copper ions (Cu²⁺), widely released from electroplating and electronics manufacturing, are highly toxic and bioaccumulative. In this study, zebrafish embryos were exposed for 96 hours to PS-NPs, K₂Cr₂O₇, CuSO₄·5H₂O, or their mixtures following OECD TG 236. Developmental endpoints including mortality, hatching, body length, heart rate, and deformations were assessed, ROS levels and metal accumulation were analyzed to investigate underlying mechanisms and potential synergistic toxicity, and swim bladder development was examined through uninflated rate, size, behavior, and gene expression.
    The results showed that while PS-NPs alone induced minimal effects, co-exposure with Cr⁶⁺ or Cu²⁺ increased mortality, delayed hatching, impaired growth, altered cardiac function, and intensified malformations.Mechanistic analyses revealed increased metal accumulation and elevated ROS, suggesting enhanced metal bioavailability. Swim bladder defects were the most prominent, with higher uninflated rates, reduced size, decreased swimming activity, and downregulated developmental genes.These findings demonstrate that PS-NPs amplify heavy metal toxicity in embryos and highlight the swim bladder as a sensitive biomarker for assessing mixed-pollution risks in aquatic environments.

    第一章、研究背景1 第一節、微塑膠與奈米塑膠的環境暴露現況與污染問題1 第二節、奈米塑膠的物化特性與生物體內潛在毒性機制2 第三節、水生環境中常見重金屬污染與毒性特徵4 第四節、奈米塑膠與重金屬的相互作用與共暴露問題9 第五節、斑馬魚胚胎作為環境毒理研究模型之優勢10 第六節、魚鰾在斑馬魚發育、生理功能與毒理研究中的重要性15 第七節、魚鰾發育的分子調控與關鍵訊號途徑17 第二章、研究目的20 第三章、研究材料與方法21 第一節、試劑準備21 第二節、奈米物質物理特性分析方法22 第三節、斑馬魚品系、飼養與繁殖22 第四節、斑馬魚胚胎之螢光奈米物質分布23 第五節、斑馬魚胚胎急毒性試驗 (Zebrafish Embryo Toxicity Test, FET Test)24 第六節、金屬物質篩選25 第七節、胚胎死亡率 (Mortality rate) 分析26 第八節、胚胎孵化率 (Hatching rate) 分析26 第九節、胚胎體長 (Body length) 分析26 第十節、胚胎心率 (Heart rate) 分析 26 第十一節、斑馬魚胚胎畸形 (Deformation) 分析27 第十二節、胚胎氧化壓力 (Oxidative stress) 分析27 第十三節、胚胎內金屬離子濃度 (Metal ions concentration) 分析28 第十四節、協同作用 (Synergistic effect) 分析28 第十五節、胚胎魚鰾缺失率 (Uninflated swim bladder rate) 分析29 第十六節、胚胎魚鰾尺寸 (Swim bladder size) 分析30 第十七節、胚胎魚鰾缺失造成的行為 (Swim behavior) 分析31 第十八節、胚胎魚鰾發育相關基因表達量 (Gene expression) 分析31 第十九節、統計分析32 第四章、研究結果34 第一節、奈米聚苯乙烯之物化特性與生物分佈34 第二節、不同物質對斑馬魚胚胎之急毒性與LC50建立34 第三節、重金屬以及奈米聚苯乙烯共同暴露之斑馬魚胚胎急毒性評估及篩選35 第四節、奈米聚苯乙烯的共同暴露顯著加劇重金屬所引發的胚胎死亡率35 第五節、探討重金屬與奈米聚苯乙烯共同暴露對胚胎孵化率的影響36 第六節、探討重金屬與奈米聚苯乙烯共同暴露導致胚胎體型發育不全36 第七節、探討重金屬與奈米聚苯乙烯共同暴露引發的心臟生理反應變化37 第八節、探討重金屬以及奈米聚苯乙烯造成之胚胎畸形率37 第九節、奈米聚苯乙烯共同暴露加劇重金屬誘發之多重畸形現象與畸形分布38 第十節、探討氧化壓力參與重金屬以及奈米聚苯乙烯所導致的毒性增加38 第十一節、重金屬和奈米聚苯乙烯共同暴露後胚胎內重金屬離子累積量的變化39 第十二節、奈米塑膠與重金屬之間的協同毒性效應39 第十三節、重金屬和奈米聚苯乙烯共同暴露對魚鰾發育之毒性評估40 第十四節、魚鰾損傷對胚胎游泳行為之影響41 第十五節、潛在魚鰾發育毒性機制探討-魚鰾相關基因表達42 第五章、討論44 第一節、PS-NPs與不同金屬共同暴露下毒性差異以鉛離子反應最不顯著44 第二節、重鉻酸鉀暴露會導致胚胎心率增加45 第三節、鉻與銅在斑馬魚胚胎中的毒性反應差異及其背後的化學特性比較45 第四節、PS-NPs暴露可能增強胚胎游泳行為46 第六章、結論48 第七章、參考文獻49 第八章、圖表57

    Adman ET. 1991. Copper protein structures. Adv Protein Chem 42:145-197.
    Alimi OS, Farner Budarz J, Hernandez LM, Tufenkji N. 2018. Microplastics and nanoplastics in aquatic environments: Aggregation, deposition, and enhanced contaminant transport. Environmental Science & Technology 52:1704-1724.
    bakhat H, Amir I, Kazmi A, Ali A, Luna-Arias JP, Medina-Pérez G, et al. 2025. A review on microplastics in aquatic ecosystems: Prevalence, ecological risks, and solutions. Ecological Frontiers.
    Barus BS, Chen K, Cai M, Li R, Chen H, Li C, et al. 2021. Heavy metal adsorption and release on polystyrene particles at various salinities. Frontiers in Marine Science Volume 8 - 2021.
    Batir-Marin D, Boev M, Cioanca O, Lungu I-I, Marin G-A, Burlec AF, et al. 2025. Exploring oxidative stress mechanisms of nanoparticles using zebrafish (danio rerio): Toxicological and pharmaceutical insights. Antioxidants; doi: 10.3390/antiox14040489.
    Bi S, Liu S, Liu E, Xiong J, Xu Y, Wu R, et al. 2024. Adsorption behavior and mechanism of heavy metals onto microplastics: A meta-analysis assisted by machine learning. Environmental Pollution 360:124634.
    Blundy J, Afanasyev A, Tattitch B, Sparks S, Melnik O, Utkin I, et al. 2021. The economic potential of metalliferous sub-volcanic brines. R Soc Open Sci 8:202192.
    Brennecke D, Duarte B, Paiva F, Caçador I, Canning-Clode J. 2016. Microplastics as vector for heavy metal contamination from the marine environment. Estuarine, Coastal and Shelf Science 178:189-195.
    Brun NR, van Hage P, Hunting ER, Haramis AG, Vink SC, Vijver MG, et al. 2019. Polystyrene nanoplastics disrupt glucose metabolism and cortisol levels with a possible link to behavioural changes in larval zebrafish. Commun Biol 2:382.
    Cao J, Yang Q, Jiang J, Dalu T, Kadushkin A, Singh J, et al. 2022. Coronas of micro/nano plastics: A key determinant in their risk assessments. Part Fibre Toxicol 19:55.
    Carr SA, Liu J, Tesoro AG. 2016. Transport and fate of microplastic particles in wastewater treatment plants. Water Research 91:174-182.
    Carriera F, Di Fiore C, Avino P. 2023. Trojan horse effects of microplastics: A mini-review about their role as a vector of organic and inorganic compounds in several matrices. AIMS Environmental Science 10:732-742.
    Chackal R, Eng T, Rodrigues EM, Matthews S, Pagé-Lariviére F, Avery-Gomm S, et al. 2022. Metabolic consequences of developmental exposure to polystyrene nanoplastics, the flame retardant bde-47 and their combination in zebrafish. Frontiers in Pharmacology Volume 13 - 2022.
    Chen Q, Zhao H, Liu Y, Jin L, Peng R. 2023. Factors affecting the adsorption of heavy metals by microplastics and their toxic effects on fish. Toxics 11.
    Copper Development Association Inc. 2022. U.S. Copper supply & consumption 2002-2022. Available: https://copper.org/resources/market_data/.
    Dang Dang K, Ho C, Van H, Thanh S, Nguyen Q, Nguyen T, et al. 2023. Hexavalent chromium inhibited zebrafish embryo development by altering apoptosis- and antioxidant-related genes. Current Issues in Molecular Biology 45:6916-6926.
    Dang KD, Ho CN, Van HD, Dinh ST, Nguyen QT, Nguyen TT, et al. 2023. Hexavalent chromium inhibited zebrafish embryo development by altering apoptosis- and antioxidant-related genes. Current Issues in Molecular Biology; doi: 10.3390/cimb45080436.
    Dang KD, Ho CNQ, Van HD, Dinh ST, Nguyen QTT, Nguyen TTT, et al. 2023. Hexavalent chromium inhibited zebrafish embryo development by altering apoptosis- and antioxidant-related genes. Curr Issues Mol Biol 45:6916-6926.
    Dasmahapatra AK, Chatterjee J, Tchounwou PB. 2025. A systematic review of the effects of nanoplastics on fish. Frontiers in Toxicology Volume 7 - 2025.
    Dave G, Xiu RQ. 1991. Toxicity of mercury, copper, nickel, lead, and cobalt to embryos and larvae of zebrafish, brachydanio rerio. Arch Environ Contam Toxicol 21:126-134.
    Delov V, Muth-Köhne E, Schäfers C, Fenske M. 2014. Transgenic fluorescent zebrafish tg(fli1:Egfp)y1 for the identification of vasotoxicity within the zfet. Aquatic Toxicology 150:189-200.
    DesMarais TL, Costa M. 2019. Mechanisms of chromium-induced toxicity. Curr Opin Toxicol 14:1-7.
    Domingues I, Oliveira R, Lourenço J, Grisolia CK, Mendo S, Soares AMVM. 2010. Biomarkers as a tool to assess effects of chromium (vi): Comparison of responses in zebrafish early life stages and adults. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 152:338-345.
    ECHA. 2023. Echa to prepare restriction proposal on chromium (vi) substances. Available: https://echa.europa.eu/-/echa-to-prepare-restriction-proposal-on-chromium-vi-substances.
    Feng M, Luo J, Wan Y, Zhang J, Lu C, Wang M, et al. 2022. Polystyrene nanoplastic exposure induces developmental toxicity by activating the oxidative stress response and base excision repair pathway in zebrafish (danio rerio). ACS Omega 7:32153-32163.
    Gao Y, Yang P. 2023. The impaired swim bladder via ros-mediated inhibition of the wnt / hedgehog pathway in zebrafish embryos exposed to eight toxic chemicals and binary chemical mixtures. Chemosphere 338:139593.
    Gao Y, Yang P, Zhu J. 2023. Particle size-dependent effects of silver nanoparticles on swim bladder damage in zebrafish larvae. Ecotoxicol Environ Saf 249:114363.
    Geng Y, Liu Z, Hu R, Huang Y, Li F, Ma W, et al. 2023. Toxicity of microplastics and nanoplastics: Invisible killers of female fertility and offspring health. Front Physiol 14:1254886.
    Golmohammadi M, Fatemeh Musavi S, Habibi M, Maleki R, Golgoli M, Zargar M, et al. 2023. Molecular mechanisms of microplastics degradation: A review. Separation and Purification Technology 309:122906.
    Gore AV, Pillay LM, Venero Galanternik M, Weinstein BM. 2018. The zebrafish: A fintastic model for hematopoietic development and disease. Wiley Interdiscip Rev Dev Biol 7:e312.
    Hansjosten I, Takamiya M, Rapp J, Reiner L, Fritsch-Decker S, Mattern D, et al. 2022. Surface functionalisation-dependent adverse effects of metal nanoparticles and nanoplastics in zebrafish embryos. Environmental Science: Nano 9:375-392.
    Hong TI, Kang SG, Lee YR, Choi TI, Kim WK, Kim CH. 2021. The effects of copper constituent of coin currency on embryonic zebrafish development. Biomed Res Int 2021:2134928.
    Hou Y, Liu X, Qin Y, Hou Y, Hou J, Wu Q, et al. 2023. Zebrafish as model organisms for toxicological evaluations in the field of food science. Comprehensive Reviews in Food Science and Food Safety 22:3481-3505.
    Huang C-J, Tu C-T, Hsiao C-D, Hsieh F-J, Tsai H-J. 2003. Germ-line transmission of a myocardium-specific gfp transgene reveals critical regulatory elements in the cardiac myosin light chain 2 promoter of zebrafish. Developmental Dynamics 228:30-40.
    Huang J, Duan P, Hu C, Jin Y, Zhang W. 2025. Neurotoxicity and cardiotoxicity alleviation by polystyrene microplastics in cadmium sulfide-exposed zebrafish larvae. Ecotoxicology and Environmental Safety 305:119248.
    Huang M-Y, Duan R-Y, Yin J-W, Zhao Q, Wan Y-Y, Liu Y. 2020. Individual and mixture toxicity of chromium and copper in development, oxidative stress, lipid metabolism and apoptosis of bufo gargarizans embryos. Aquatic Toxicology 229:105671.
    Igalavithana AD, Mahagamage MGYL, Gajanayake P, Abeynayaka A, Gamaralalage PJ, Ohgaki M, et al. 2022. Microplastics and potentially toxic elements: Potential human exposure pathways through agricultural lands and policy based countermeasures. Microplastics; doi: 10.3390/microplastics1010007.
    Jambeck JR, Geyer R, Wilcox C, Siegler TR, Perryman M, Andrady A, et al. 2015. Plastic waste inputs from land into the ocean. Science 347:768-771.
    Jarema KA, Hunter DL, Hill BN, Olin JK, Britton KN, Waalkes MR, et al. 2022. Developmental neurotoxicity and behavioral screening in larval zebrafish with a comparison to other published results. Toxics 10.
    Kim J, Haque MN, Lee S, Lee DH, Rhee JS. 2022. Exposure to environmentally relevant concentrations of polystyrene microplastics increases hexavalent chromium toxicity in aquatic animals. Toxics 10.
    Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF. 1995. Stages of embryonic development of the zebrafish. Dev Dyn 203:253-310.
    Krupanidhi S, Sreekumar A, Sanjeevi CB. 2008. Copper & biological health. Indian J Med Res 128:448-461.
    Lai KP, Gong Z, Tse WKF. 2021. Zebrafish as the toxicant screening model: Transgenic and omics approaches. Aquat Toxicol 234:105813.
    Lee WS, Cho HJ, Kim E, Huh YH, Kim HJ, Kim B, et al. 2019. Correction: Bioaccumulation of polystyrene nanoplastics and their effect on the toxicity of au ions in zebrafish embryos. Nanoscale 11:3396.
    Li J, Liu H, Paul Chen J. 2018. Microplastics in freshwater systems: A review on occurrence, environmental effects, and methods for microplastics detection. Water Research 137:362-374.
    Lin S, Zhao Y, Nel AE, Lin S. 2013. Zebrafish: An in vivo model for nano ehs studies. Small 9:1608-1618.
    Ling D, Chen H, Chan G, Lee SM. 2022. Quantitative measurements of zebrafish heartrate and heart rate variability: A survey between 1990-2020. Comput Biol Med 142:105045.
    Lu C, Lv Y, Kou G, Liu Y, Liu Y, Chen Y, et al. 2022. Silver nanoparticles induce developmental toxicity via oxidative stress and mitochondrial dysfunction in zebrafish (danio rerio). Ecotoxicology and Environmental Safety 243:113993.
    Luzio A, Parra S, Costa B, Santos D, Alvaro AR, Monteiro SM. 2021. Copper impair autophagy on zebrafish (danio rerio) gill epithelium. Environ Toxicol Pharmacol 86:103674.
    Ma EY, Heffern K, Cheresh J, Gallagher EP. 2018. Differential copper-induced death and regeneration of olfactory sensory neuron populations and neurobehavioral function in larval zebrafish. Neurotoxicology 69:141-151.
    Ma HW, Hung ML, Chen PC. 2007. A systemic health risk assessment for the chromium cycle in taiwan. Environ Int 33:206-218.
    MacRae CA, Peterson RT. 2015. Zebrafish as tools for drug discovery. Nat Rev Drug Discov 14:721-731.
    Mahmud F, Sarker DB, Jocelyn JA, Sang Q-XA. 2024a. Molecular and cellular effects of microplastics and nanoplastics: Focus on inflammation and senescence. Cells; doi: 10.3390/cells13211788.
    Mahmud F, Sarker DB, Jocelyn JA, Sang Q-XA. 2024b. Molecular and cellular effects of microplastics and nanoplastics: Focus on inflammation and senescence. Cells 13:1788.
    Malekahmadi M, Firouzi S, Rezayi M, Ghazizadeh H, Ranjbar G, Ferns GA, et al. 2020. Association of zinc and copper status with cardiovascular diseases and their assessment methods: A review study. Mini Rev Med Chem 20:2067-2078.
    McCune AR, Carlson RL. 2004. Twenty ways to lose your bladder: Common natural mutants in zebrafish and widespread convergence of swim bladder loss among teleost fishes. Evol Dev 6:246-259.
    Milillo C, Aruffo E, Di Carlo P, Patruno A, Gatta M, Bruno A, et al. 2024. Polystyrene nanoplastics mediate oxidative stress, senescence, and apoptosis in a human alveolar epithelial cell line. Front Public Health 12:1385387.
    Morishita H, Kanda Y, Kaizuka T, Chino H, Nakao K, Miki Y, et al. 2020. Autophagy is required for maturation of surfactant-containing lamellar bodies in the lung and swim bladder. Cell Rep 33:108477.
    Morishita H, Kanda Y, Mizushima N. 2021. No air without autophagy: Autophagy is important for lung and swim bladder inflation. Autophagy 17:1040-1041.
    Mrinalini R, Tamilanban T, Naveen Kumar V, Manasa K. 2023. Zebrafish - the neurobehavioural model in trend. Neuroscience 520:95-118.
    Muñoz C, Rios E, Olivos J, Brunser O, Olivares M. 2007. Iron, copper and immunocompetence. Br J Nutr 98 Suppl 1:S24-28.
    OECD. 2013. Test no. 236: Fish embryo acute toxicity (fet) test.
    Oliveira NAS, Pinho BR, Oliveira JMA. 2023. Swimming against als: How to model disease in zebrafish for pathophysiological and behavioral studies. Neurosci Biobehav Rev 148:105138.
    Ortiz-Román MI, Casiano-Muñiz IM, Román-Velázquez FR. 2024. Ecotoxicological effects of tio(2) p25 nanoparticles aqueous suspensions on zebrafish (danio rerio) eleutheroembryos. Nanomaterials (Basel) 14.
    Pedersen AF, Meyer DN, Petriv AV, Soto AL, Shields JN, Akemann C, et al. 2020. Nanoplastics impact the zebrafish (danio rerio) transcriptome: Associated developmental and neurobehavioral consequences. Environ Pollut 266:115090.
    Pereira TC, Campos MM, Bogo MR. 2016. Copper toxicology, oxidative stress and inflammation using zebrafish as experimental model. J Appl Toxicol 36:876-885.
    Poggere G, Gasparin A, Barbosa JZ, Melo GW, Corrêa RS, Motta ACV. 2023. Soil contamination by copper: Sources, ecological risks, and mitigation strategies in brazil. Journal of Trace Elements and Minerals 4:100059.
    Ponce K, Guerrero-Galvan S, Vega-Villasante F, Rodríguez-Partida D. 2022. Toxicity of secondary treated sewage disinfected with chlorine gas and hypochlorite to zebrafish danio rerio. Latin American Journal of Aquatic Research 50:753-759.
    Qiao R, Lu K, Deng Y, Ren H, Zhang Y. 2019. Combined effects of polystyrene microplastics and natural organic matter on the accumulation and toxicity of copper in zebrafish. Sci Total Environ 682:128-137.
    Qiao R, Lu K, Deng Y, Ren H, Zhang Y. 2019. Combined effects of polystyrene microplastics and natural organic matter on the accumulation and toxicity of copper in zebrafish. Science of The Total Environment 682:128-137.
    Sánchez-Olivares M, Gaytán-Oyarzún J, Martínez A, Prieto-Garcia F, Cabrera-Cruz R. 2021. Toxicity and teratogenicity in zebrafish danio rerio embryos exposed to chromium. Latin American Journal of Aquatic Research 49:289-298.
    Santos D, Felix L, Luzio A, Parra S, Cabecinha E, Bellas J, et al. 2020. Toxicological effects induced on early life stages of zebrafish (danio rerio) after an acute exposure to microplastics alone or co-exposed with copper. Chemosphere 261:127748.
    Santos D, Félix L, Luzio A, Parra S, Cabecinha E, Bellas J, et al. 2020. Toxicological effects induced on early life stages of zebrafish (danio rerio) after an acute exposure to microplastics alone or co-exposed with copper. Chemosphere 261:127748.
    Saputra F, Pramata AD, Soegianto A, Hu S-Y. 2025. Polystyrene nanoplastics cause developmental abnormalities, oxidative damage and immune toxicity in early zebrafish development. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 295:110216.
    Scheiber I, Dringen R, Mercer JF. 2013. Copper: Effects of deficiency and overload. Met Ions Life Sci 13:359-387.
    Shen M, Zhang Y, Zhu Y, Song B, Zeng G, Hu D, et al. 2019. Recent advances in toxicological research of nanoplastics in the environment: A review. Environmental Pollution 252:511-521.
    Shi X, Wang X, Huang R, Tang C, Hu C, Ning P, et al. 2022. Cytotoxicity and genotoxicity of polystyrene micro- and nanoplastics with different size and surface modification in a549 cells. Int J Nanomedicine 17:4509-4523.
    Sonnack L, Klawonn T, Kriehuber R, Hollert H, Schäfers C, Fenske M. 2018. Comparative analysis of the transcriptome responses of zebrafish embryos after exposure to low concentrations of cadmium, cobalt and copper. Comp Biochem Physiol Part D Genomics Proteomics 25:99-108.
    Stoyek M, Smith F, Croll R. 2011. Effects of altered ambient pressure on the volume and distribution of gas within the swimbladder of the adult zebrafish, danio rerio. The Journal of experimental biology 214:2962-2972.
    Subendran S, Wang Y-C, Lu Y-H, Chen C-Y. 2021. The evaluation of zebrafish cardiovascular and behavioral functions through microfluidics. Scientific Reports 11:13801.
    Sun N, Shi H, Li X, Gao C, Liu R. 2023. Combined toxicity of micro/nanoplastics loaded with environmental pollutants to organisms and cells: Role, effects, and mechanism. Environment International 171:107711.
    Tang KHD, Hadibarata T. 2021. Microplastics removal through water treatment plants: Its feasibility, efficiency, future prospects and enhancement by proper waste management. Environmental Challenges 5:100264.
    Trevisan R, Uzochukwu D, Di Giulio RT. 2020. Pah sorption to nanoplastics and the trojan horse effect as drivers of mitochondrial toxicity and pah localization in zebrafish. Frontiers in Environmental Science Volume 8 - 2020.
    Tseng CH, Lee IH, Chen YC. 2019. Evaluation of hexavalent chromium concentration in water and its health risk with a system dynamics model. Sci Total Environ 669:103-111.
    Van Dingenen I, Vergauwen L, Haigis AC, Blackwell BR, Stacy E, Villeneuve DL, et al. 2023. Deiodinase inhibition impairs the formation of the three posterior swim bladder tissue layers during early embryonic development in zebrafish. Aquat Toxicol 261:106632.
    Wang L, Wu WM, Bolan NS, Tsang DCW, Li Y, Qin M, et al. 2021. Environmental fate, toxicity and risk management strategies of nanoplastics in the environment: Current status and future perspectives. J Hazard Mater 401:123415.
    Wang L, Guo C, Qian Q, Lang D, Wu R, Abliz S, et al. 2023. Adsorption behavior of uv aged microplastics on the heavy metals pb(ii) and cu(ii) in aqueous solutions. Chemosphere 313:137439.
    Winata CL, Korzh S, Kondrychyn I, Zheng W, Korzh V, Gong Z. 2009. Development of zebrafish swimbladder: The requirement of hedgehog signaling in specification and organization of the three tissue layers. Dev Biol 331:222-236.
    Winata CL, Korzh S, Kondrychyn I, Zheng W, Korzh V, Gong Z. 2009. Development of zebrafish swimbladder: The requirement of hedgehog signaling in specification and organization of the three tissue layers. Developmental Biology 331:222-236.
    Wise JP, Jr., Young JL, Cai J, Cai L. 2022. Current understanding of hexavalent chromium [cr(vi)] neurotoxicity and new perspectives. Environ Int 158:106877.
    Xia Y, Niu S, Yu J. 2023. Microplastics as vectors of organic pollutants in aquatic environment: A review on mechanisms, numerical models, and influencing factors. Science of The Total Environment 887:164008.
    Xu Y, Wang L, Zhu J, Jiang P, Zhang Z, Li L, et al. 2021. Chromium induced neurotoxicity by altering metabolism in zebrafish larvae. Ecotoxicology and Environmental Safety 228:112983.
    Yang D, Yang H, Shi M, Jia X, Sui H, Liu Z, et al. 2023. Advancing food safety risk assessment in china: Development of new approach methodologies (nams). Front Toxicol 5:1292373.
    Yang Y, Yu Y, Zhou R, Yang Y, Bu Y. 2021. The effect of combined exposure of zinc and nickel on the development of zebrafish. J Appl Toxicol 41:1765-1778.
    Yin A, Korzh S, Winata CL, Korzh V, Gong Z. 2011. Wnt signaling is required for early development of zebrafish swimbladder. PLOS ONE 6:e18431.
    Yougbare S, Mutalik C, Okoro G, Lin IH, Krisnawati D, Jazidie A, et al. 2021. Emerging trends in nanomaterials for antibacterial applications. International Journal of Nanomedicine 16:5831-5867.
    Zhang T, Zhang C, Zhang J, Lin J, Song D, Zhang P, et al. 2022. Cadmium impairs zebrafish swim bladder development via ros mediated inhibition of the wnt / hedgehog pathway. Aquatic Toxicology 247:106180.
    Zhang W, Zhang L, Hua T, Li Y, Zhou X, Wang W, et al. 2020. The mechanism for adsorption of cr(vi) ions by pe microplastics in ternary system of natural water environment. Environ Pollut 257:113440.
    Zhao G, Sun H, Zhang T, Liu JX. 2020. Copper induce zebrafish retinal developmental defects via triggering stresses and apoptosis. Cell Commun Signal 18:45.
    Zhao WG, Tian YM, Zhao P, Zhao LA, Jin C. 2023. [research progress on trojan-horse effect of microplastics and heavy metals in freshwater environment]. Huan Jing Ke Xue 44:1244-1257.
    Zhou N, Huo F, Yue Y, Ma K, Yin C. 2020. Rearrangement regulated cysteine fluorescent probe for cellular oxidative stress evaluation induced by copper(ii). Chinese Chemical Letters 31:2970-2974.

    QR CODE