| 研究生: |
林辰憶 Lin, Chen-Yi |
|---|---|
| 論文名稱: |
輪椅使用者地震安全之振動台實驗與數值模擬研究 Shaking table experiment and numerical simulation research on earthquake safety of wheelchair users |
| 指導教授: |
姚昭智
Yao, Chao-Chih |
| 學位類別: |
碩士 Master |
| 系所名稱: |
規劃與設計學院 - 建築學系 Department of Architecture |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 130 |
| 中文關鍵詞: | 防災 、地震 、輪椅安全 |
| 外文關鍵詞: | Disaster Prevention, Earthquake, Wheelchair Safety |
| 相關次數: | 點閱:110 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於高齡化社會的到來,輪椅使用比率逐漸提升,也有研究開始關心輪椅使用者在地震時的安全性。由過往的研究得知,輪椅使用者在地震時可能會面臨到的輪椅振動行為包含(傾斜角度由小到大):Walking(走步),Rocking(搖擺),以及最危險的行為Overturning(翻覆),其中,翻覆分成側向翻覆以及向後翻覆。而對應到不同的加速度振幅、激振頻率(對應到各建築物樓高自振頻率),則會觸發不同的輪椅振動行為發生,其中激振加速度愈大、頻率愈低(高樓層建築物)愈容易造成輪椅的翻覆。
本研究透過實驗以及建立數值模擬的方式發現,在同樣的加速度振幅作用下,當激振頻率低於輪椅翻覆的最高頻率時,輪椅亦會翻覆,因此,輪椅的翻覆頻率為一段範圍區間而非一特定值。當加速度振幅增加時,輪椅翻覆的最高頻率也會提升,低頻區間也隨著擴張。因此,對應到不同的加速度振幅,會有不同的輪椅翻覆頻率範圍。
另外,本研究亦發現,輪椅在發生Walking的同時,雖傾斜角度相當小,若因前進距離過大導致撞擊到前方的障礙物,亦會讓原先的傾斜角度放大,進而發生輪椅傾倒的現象,而Walking前進距離的大小會因為輪椅性能而異,不同的輪椅會有不同程度的前進距離。前進距離愈大,表示輪椅的前進速度慣性也愈大,若在沒有發生撞擊的情況下,輪椅也愈不容易被反向震波向後推倒,也因此,某種程度上,在空曠的地方,當輪椅使用者沒有辦法用手握住周遭固定物的情況下,透過人體彎腰降低重心,雖然增加輪椅的前進距離,卻能夠降低輪椅向後傾斜的角度、甚至避開輪椅後傾的危險:然而此法並非萬能,在某些特定狀況下亦有彎腰無效的情形存在。
輪距與傾倒頻率亦存在一定的關係,由本實驗中比較的兩款輪椅,其前後輪距差異可達1.7倍,輪椅前後輪距愈大,向後傾倒的頻率範圍愈小,愈不容易傾倒;而兩輪椅的左右輪距愈大,傾倒頻率範圍亦愈小,可知輪距大的輪椅較不易翻覆。
最後,由本研究的實驗結果得知,以外部束制來固定輪椅的方式,能夠避免輪椅前後與左右傾倒,而裝設輪椅符合設計規範的防傾桿則是能夠完全避免掉輪椅向後傾倒的危險,於防止側向傾倒則不具備任何作用。然而相較於外部束制來固定輪椅,防傾桿為機動性較高的防傾方式。也因此呼籲輪椅使用者,基於地震安全性考量,平時切莫輕易拿掉輪椅的防傾桿。
Based on previous research, it has been found that wheelchair users may experience different wheelchair vibration behaviors during earthquakes, ranging from walking, rocking, to the most dangerous behavior—overturning, which can occur in sideways or backward directions. Corresponding to different acceleration amplitudes and excitation frequencies related to the natural frequencies of different building heights, different wheelchair vibration behaviors can be triggered. Among them, higher excitation accelerations and lower frequencies typically associated with taller buildings are more likely to result in wheelchair overturning.
Through experiments and numerical simulations, this study discovered that the frequency range of wheelchair overturning is not a specific value but rather a range. As the acceleration amplitude increases, the maximum frequency of wheelchair overturning also increases, expanding the low-frequency range. Therefore, different acceleration amplitudes correspond to different ranges of wheelchair overturning frequencies.
Moreover, when the safe distance in front is insufficient, wheelchair tilting can be amplified and lead to tipping over after a collision caused by walking. Additionally, the study also found a correlation between wheelchair track width and overturning frequency. A larger track width results in a narrower range of overturning frequencies, making it less prone to overturning.
Finally,based on the experimental results of this study, it is concluded that restraining the wheelchair externally can prevent tipping in the backward, and sideways directions. On the other hand, installing anti-tipping bars that comply with design specifications can completely eliminate the risk of backward tipping. However, they do not have any effect in preventing sideways tipping. In comparison to externally restraining the wheelchair, anti-tipping bars offer higher mobility as a means of preventing tipping. Therefore, wheelchair users are strongly advised, considering seismic safety, not to remove the anti-tipping bars from their wheelchairs without due consideration.
充彦寺屋, 山口隼, & 坂本佑介. 観測地震波を用いた車いす使用者. 東京: 東京消防廳消防技術安全所,2021
林曉儷,輪椅輔具耐震性能安全評估,碩士論文,國立成功大學建築系,台南市, 2022
施尚融 (2011),交通載具輪椅動態安全測試,財團法人車輛研究測試中心,擷取自https://www.bsmi.gov.tw/wSite/public/Attachment/f1308277200257.pdf
國家發展委員會 (2022),重要統計資料手冊,中華民國人口推估(2022年至2070年),擷取自https://pop-proj.ndc.gov.tw/upload/download/%E4%B8%AD%E8%8F%AF%E6%B0%91%E5%9C%8B%E4%BA%BA%E5%8F%A3%E6%8E%A8%E4%BC%B0(2022%E5%B9%B4%E8%87%B32070%E5%B9%B4)%E5%A0%B1%E5%91%8A.pdf
郭晉誠 (2017),車用輪椅及其束縛系統之安全性,財團法人車輛研究測試中心,擷取自https://www.artc.org.tw/upfiles/EditUpload/file/ecHo/201701/%E8%BB%8A%E7%94%A8%E8%BC%AA%E6%A4%85%E5%8F%8A%E5%85%B6%E6%9D%9F%E7%B8%9B%E7%B3%BB%E7%B5%B1%E4%B9%8B%E5%AE%89%E5%85%A8%E6%80%A7.pdf
Gu,Jun, Dynamic impact testing and computer simulation of wheelchair tiedown and occupant restraint systems (WTORS), PhD thesis, Middlesex University,London,1999.from https://eprints.mdx.ac.uk/8107/
06 Fit a loopwheel to a wheelchair -for non-wheelchair users (2015).擷取自 https://www.youtube.com/watch?v=EsdO_2Xrp4g
MTS_國家地震工程研究中心台南實驗室<關鍵零組件測試系統> (2023),擷取自https://www.sinodynamics.com.tw/case-detail/33/
內政部消防署網站 (2023),擷取自https://www.tfdp.com.tw/cht/index.php?code=list&flag=detail&ids=84&article_id=468
Fitting Easilok from Unwin Safety Systems (2011).取自https://www.youtube.com/watch?v=iPdhIdoF3tk
Q'Straint : QUANTUM Automatic Rear-Facing Wheelchair Securement Station (2016). 擷取自https://www.youtube.com/watch?v=fPqvEUntsh8&t=38s
06 Fit a loopwheel to a wheelchair -for non-wheelchair user (2015).取自https://www.youtube.com/watch?v=EsdO_2Xrp4g
Loopwheels -A revolution in wheel technology (2014). 取自https://www.youtube.com/watch?v=P5JPB_kKAg8&t=13s
ISO/DIS 10542-1(2012), Wheelchair tiedown and occupant restraint systems, International Organization for Standardization.
國家音樂廳無障礙輪椅席圖片 (2018),擷取自https://ent.ltn.com.tw/news/breakingnews/2355357
高雄國賓義大影城無障礙觀眾席圖片 (2013),擷取自https://www.appledaily.com.tw/headline/20130123/VXCCQCO6OSWD7JJPPD6T5ATWWI/
校內:2028-07-26公開