簡易檢索 / 詳目顯示

研究生: 廖畊宇
Liao, Keng-Yu
論文名稱: 以延伸整合科技模型探討資訊安全對消費者使用智慧家庭設備之意願
An investigation of the influences of information security on consumers' intention in adopting smart home services using UTAUT2 model
指導教授: 呂執中
Lyu, Jr-Jung
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業與資訊管理學系碩士在職專班
Department of Industrial and Information Management (on the job class)
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 88
中文關鍵詞: 智慧家庭資訊安全隱私行動通訊延伸整合性科技接受模型
外文關鍵詞: Internet of Things(IoT), Smart home, Security, Privacy, The Extended Unified Theory of the Acceptance and Use of Technology(UTAUT2)
相關次數: 點閱:112下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Gartner (2015)推測在2017年,消費性市場的智慧家庭會成長到10億美元為最消費市場中最大中的類型。GfK (2016)調查顯示,全球有78%的消費者認為智能家居是一個非常吸引人的概念,消費者期待物聯網技術發展能改善生活體驗,隨著越來越多的產品和服務成為互聯網,完全連接家庭的想法逐漸成為現實。智慧手機APP協助我們控制這些智慧家庭設備,手機透過行動通訊控制智慧家庭,行動通訊速度的提升,提升消費者對智慧家庭設備的體驗經驗,間接地促使了智慧家庭的發展。
    在2016年世界各大網站服務皆因為巨大規模 DDoS 攻擊,網站服務因為攻擊而中斷,事後發現DDoS 攻擊的發起者未明,但多數攻擊者來自物聯網設備。可知物聯網裝置的暴露在網際網路下,背後藏著資訊安全風險的問題。智慧家庭設備與日俱增,相對的也帶來更大的資訊安全危機,智慧家庭設備有可能成為被攻擊的對象或是駭客攻擊的跳板工具。
    針對以上問題,可以知道資訊安全、行動通訊為物聯網後續發展,相當重要的因素,因此透過延伸整合性科技接受模型為基礎,來探討資訊安全對消費者使用智慧家庭設備之意願,提供未來推展與實行上所需著重評估之關鍵因素。
    本研究對於有考慮使用或是已經在使用智慧家的消費者進行問卷,共蒐集238份有效問卷,利用迴歸分析進行驗證。研究結果發現績效期望、習慣、行動通訊為主要影響消費者使用意圖的主要因素,其餘因素並不會對消費者的使用意圖帶來太顯著的影響。
    台灣民眾對於資訊安全的認知過低,不清楚資訊安全所帶來的風險,以及對於隱私的注重較低,前述兩個原因導致安全危機、隱私危機對使用意圖有影響的假說不成立。未來在智慧家庭設備商的研發上,相較於資訊安全及隱私,研究金費可多著重在行動通訊的應用,畢竟消費者的選擇上,行動通訊的影響是大於資訊安全及隱私的。

    Gartner (2015) speculates that in 2017, smart homes in the consumer market will grow to $1 billion as the largest of the largest consumer markets. GfK (2016) survey shows that 78% of consumers around the world believe that smart home is a very attractive concept, consumers expect that the development of Internet of Things technology can improve the life experience. The Smart Phone App helps us to control these smart home devices. Mobile phones control smart homes through UMTS, improve the speed of mobile communications, and enhance consumers' experience of smart home devices, which indirectly promotes the development of smart homes.
    In 2016, the world's famous website services were all due to huge-scale DDoS attacks. Website services were interrupted by attacks. Afterwards, the originators of DDoS attacks from IoT devices. It can be seen that the Internet of Things device is exposed to the Internet, and there is a problem of information security risks behind it. Smart home devices are increasing day by day, which in turn leads to a greater information security crisis. Smart home devices may become targets for attacks or springboard attacks for hackers.
    In view of the above problems, we can know that information security and UMTS are important factors for the subsequent development of the Internet of Things. Therefore, based on the UTAUT2, we will explore the willingness of information security to consumers to use smart home devices and provide future development. And the key factors that need to be evaluated in terms of implementation.
    This study collected 238 valid question survey for consumers had been used smart home device experience or already been using, and used the Regression Analysis to analyze the study. The study found that the performance expectancy, effort expectancy, social influence, facilitating conditions, hedonic motivation, price value, habit, UMTS for the positive intention effect of behavioral intention. security risk, privacy risk doesn’t negative intention effect of behavioral intention.
    The people perception of information security is too low, the risks brought by information security are not clear, and the Asian people's attention to privacy is low. In the future, in the research and development of smart home equipment provider, research fees can focus on the application of mobile communications compared with information security and privacy.

    目錄 摘要 I Extended Abstract IX 誌謝 X 目錄 XI 表目錄 XIV 圖目錄 XVI 第一章 緒論 1 第一節 研究背景與動機 1 第二節 研究目的 4 第三節 研究範圍與限制 5 第四節 研究流程 5 第五節 論文架構 7 第二章 文獻探討 8 第一節 智慧家庭 8 2.1.1 智慧家庭 8 2.1.2 行動通訊 9 2.1.3 物聯網發展與挑戰 12 第二節 安全與隱私 12 2.2.1 安全 12 2.2.2 隱私 17 第三節 資訊科技接受理論比較 18 2.3.1 理性行為理論 18 2.3.2 科技接受模型 20 2.3.3 修正後資訊系統成功模型 22 2.3.4 整合科技接受模型 24 2.3.5 延伸整合型科技接受模型 27 第四節 小結 29 第三章 研究方法 30 第一節 研究架構 30 第二節 研究假說 32 3.2.1 績效期望與行為意圖 32 3.2.2 努力期望與行為意圖 33 3.2.3 社會影響與行為意圖 33 3.2.4 促成條件與行為意圖 34 3.2.5 享樂動機與行為意圖 34 3.2.6 價格價值與行為意圖 35 3.2.7 習慣與行為意圖 35 3.2.8 安全風險與行為意圖 36 3.2.9 隱私風險與行為意圖 37 3.2.10 行動通訊與行為意圖 37 第三節 問卷設計 39 3.3.1 資料收集 41 第四節 資料分析方法 42 3.4.1 敘述統計分析 42 3.4.2 信度分析 42 3.4.3 效度分析 43 3.4.4 迴歸分析 43 第五節 前測與資料分析 44 第四章 資料分析 47 第一節 敘述性統計分析 47 4.1.1 資料分析 47 4.1.2 基本資料敘述性統計 48 4.1.3 研究變項敘述性統計 49 4.1.4 同質性檢定 52 4.1.5 研究變項常態性檢定 54 第二節 信度分析 56 第三節 效度分析 59 4.3.1 收斂效度分析 59 4.3.2 區別效度分析 60 第四節 迴歸分析 61 4.4.1 迴歸分析 62 4.4.1 研究假說分析結果圖 66 第五節 小節 67 第五章 結論與建議 71 第一節 研究結論 71 第二節 管理意涵 73 第三節 研究限制與未來研究方向 74 參考文獻 75 附錄:探討資訊安全對消費者使用智慧家庭設備意願之研究問卷調查問卷 84

    中文文獻
    趨勢科技 ( 2017 ) . 趨勢科技 2018 年資安預測. From
    http://www.trendmicro.tw/tw/cloud-content/tw/pdfs/security-intelligence/reports/trend_micro_2018_prediction_paradigm_shift.pdf
    蕭文龍(2015)。統計分析入門與應用:SPSS 中文版+PLS-SEM(SmartPLS)。臺北市:碁峰資訊。
    數位時代 ( 2018 ) 台灣因「駭客攻擊」年損8100億!6成民眾沒「這觀念」,資安意識差到連3年全球倒數第一. From
    https://www.storm.mg/lifestyle/448195?srcid=73746f726d2e6d675f6e756c6c_1557684909
    DIGITIMES ( 2016 ) . 使用者需求帶動5G發展 物聯網大未來成型. From
    https://www.digitimes.com.tw/iot/article.asp?cat=130&cat1=45&cat2=20&id=0000472424_6vm5t7ht1aq81i5m5oocs
    EE Times Taiwan ; Nitin Dahad. ( 2018 ). 工業4.0進階:確保IoT安全成首要任務. From
    https://www.eettaiwan.com/news/article/20180428NT02-IoT-Security-Stays-Top-of-Agenda
    iThome ( 2011 ) . 物聯網技術大剖析. From
    https://www.ithome.com.tw/news/90461
    iTHome (2017 ). 八成民眾贊同政府應該立資安專法,但七成民眾沒聽過資安法 From https://www.ithome.com.tw/news/113749
    irdeto ( 2017 ). 九成消費者認為互聯網設備應具備足夠的安全性。From
    https://resources.irdeto.com/chinese/priotsecuritysurveyresultszh

    英文文獻
    Ajzen, I. (1985). From intentions to actions: a theory of planned behavior. In Action control (pp. 11-39). Springer, Berlin, Heidelberg.
    AIOTI. ( 2016 ). Alliance for internet of things innovation. from
    https://ec.europa.eu/information_society/newsroom/image/document/2017-7/20170208_ec_aioti__workshop_corevalues_v4_CD87BE37-BA70-4E06-7DA97FC092DB7752_42879.pdf
    Arenas Gaitán, J., Peral Peral, B., & Ramón Jerónimo, M. (2015). Elderly and internet banking: An application of UTAUT2. Journal of Internet Banking and Commerce, 20(1), 1-23.
    Alalwan, A. A., Dwivedi, Y. K., Rana, N. P., & Williams, M. D. (2016). Consumer adoption of mobile banking in Jordan: Examining the role of usefulness, ease of use, perceived risk and self-efficacy. Journal of Enterprise Information Management, 29(1), 118-139.
    Al-Hasnawi, A., Mohammed, I., & Al-Gburi, A. (2018, May). Performance evaluation of the policy enforcement fog module for protecting privacy of IoT data. Paper presented at 2018 IEEE International Conference on Electro/Information Technology (EIT), 10.1109/EIT.2018.8500157
    Bill Gates, Nathan Myhrvold, Peter Rinearson. ( 1995 ). The road ahead. Viking Penguin. United States.
    Bawack, R. E., & Kamdjoug, J. R. K. (2018). Adequacy of UTAUT in clinician adoption of health information systems in developing countries: The case of Cameroon. International journal of medical informatics, 109, 15-22.
    Baptista, G., & Oliveira, T. (2015). Understanding mobile banking: The unified theory of acceptance and use of technology combined with cultural moderators. Computers in Human Behavior, 50, 418-430.
    Bagozzi, R. P., & Yi, Y. (1988). On the evaluation of structural equation models. Journal of the Academy of Marketing Science, 16(1), 74-94.
    Bhattacherjee, A. (2002). Individual trust in online firms: Scale development and initial test. Journal of Management Information Systems, 19(1), 211-241
    Boonsiritomachai, W., & Pitchayadejanant, K. (2017). Determinants affecting mobile banking adoption by generation Y based on the unified theory of acceptance and use of technology model modified by the Technology Acceptance Model concept. From.
    https://www.sciencedirect.com/science/article/pii/S2452315117301601
    Chen, D., & Zhao, H. (2012, March). Data security and privacy protection issues in cloud computing. In 2012 International Conference on Computer Science and Electronics Engineering(Vol. 1, pp. 647-651). IEEE.
    CISION. ( 2018 ). Digital Insecurity: As billions of products connect to the internet, concerned americans prioritize security and privacy when getting them repaired, study finds. From
    https://www.prnewswire.com/news-releases/digital-insecurity-as-billions-of-products-connect-to-the-internet-concerned-americans-prioritize-security-and-privacy-when-getting-them-repaired-study-finds-300598046.html
    Chopdar, P. K., Korfiatis, N., Sivakumar, V. J., & Lytras, M. D. (2018). Mobile shopping apps adoption and perceived risks: A cross-country perspective utilizing the Unified Theory of Acceptance and Use of Technology. Computers in Human Behavior, 86, 109-128.
    Chauhan, S., & Jaiswal, M. (2016). Determinants of acceptance of ERP software training in business schools: Empirical investigation using UTAUT model. The International Journal of Management Education, 14(3), 248-262.
    Chin, W. W. (1998). Issues and opinion on structural equation modeling. MIS Quarterly, 22(1), 7-16.
    Dhir, A., Kaur, P., & Rajala, R. (2018). Why do young people tag photos on social networking sites? Explaining user intentions. International Journal of Information Management, 38(1), 117-127.
    Deogirikar, J., & Vidhate, A. (2017, February).Security attacks in IoT: A survey.Paper presented at 2017 International Conference on IoT in Social, Mobile, Analytics and Cloud (I-SMAC), 10.1109/I-SMAC.2017.8058363
    Demiris, G., & Hensel, B. (2009). “Smart Homes” for patients at the end of life. Journal of Housing for the Elderly, 23(1-2), 106-115.
    DeLone, W. H., & McLean, E. R. (1992). Information systems success: The quest for the dependent variable. Information systems research, 3(1), 60-95.
    DeLone, W. H., & McLean, E. R. (2003). The DeLone and McLean model of information systems success: a ten-year update. Journal of management information systems, 19(4), 9-30.
    Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User acceptance of computer technology: a comparison of two theoretical models. Management science, 35(8), 982-1003.
    Escobar-Rodríguez, T., & Carvajal-Trujillo, E. (2014). Online purchasing tickets for low cost carriers: An application of the unified theory of acceptance and use of technology (UTAUT) model. Tourism Management, 43, 70-88.
    Escobar-Rodríguez, T., & Carvajal-Trujillo, E. (2013). Online drivers of consumer purchase of website airline tickets. Journal of Air Transport Management, 32, 58-64.
    Fishbein, M., & Ajzen, I. (1975). Belief, attitude, intention and behavior: An introduction to theory and research. Reading, MA: Addison-Wesley.
    Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of marketing research, 18(1), 39-50.
    GrowthEnabler ( 2017 ). Martet pulse report,internet of things (IoT) From.
    https://growthenabler.com/flipbook/pdf/IOT%20Report.pdf
    Gartner. ( 2015 ). Gartner says smart cities will use 1.6 billion connected things in 2016. From https://www.gartner.com/newsroom/id/3175418
    Gartner. ( 2018 ). Gartner forecasts worldwide information security spending to exceed $124 billion in 2019. From
    https://www.gartner.com/en/newsroom/press-releases/2018-08-15-gartner-forecasts-worldwide-information-security-spending-to-exceed-124-billion-in-2019
    GfK (2016) . Making the smart home a reality. From
    https://www.gfk.com/insights/infographic/making-the-smart-home-a-reality-5/
    Hair, J. F., Black, W. C., Babin, B. J., Anderson, R. E., & Tatham, R. L. (2010). Multivariate Data Analysis. Upper Saddle River, NJ: Pearson Education.
    Hair, J. F., Sarstedt, M., Ringle, C. M., & Mena, J. A. (2012). An assessment of the use of partial least squares structural equation modeling in marketing research. Journal of the Academy of Marketing Science, 40(3), 414-433.
    Hulland, J. (1999). Use of partial least squares (PLS) in strategic management research: A review of four recent studies. Strategic Management Journal, 20(2), 195-204.
    Herrero, Á., & San Martín, H. (2017). Explaining the adoption of social networks sites for sharing user-generated content: A revision of the UTAUT2. Computers in Human Behavior, 71, 209-217.
    Harper R. ( 2003 ). Inside the smart home: ideas, possibilities and methods. in: Harper R (ed.) Inside the Smart Home. London, UK: Springer, 2003, pp. 1–13.
    Hoque, R., & Sorwar, G. (2017). Understanding factors influencing the adoption of mHealth by the elderly: an extension of the UTAUT model. International journal of medical informatics, 101, 75-84.
    Hew, J. J., Lee, V. H., Ooi, K. B., & Wei, J. (2015). What catalyses mobile apps usage intention: an empirical analysis. Industrial Management & Data Systems, 115(7), 1269-1291.
    Hussain, R., & Abdullah, I. (2018, August). Review of Different encryptionand decryption techniques used for security and privacy of IoT in different applications. Paper presented at 2018 IEEE International Conference on Smart Energy Grid Engineering (SEGE), 10.1109/SEGE.2018.8499430
    ITU. ( 2005 ). ITU Internet reports 2005: The iternet of tings. From
    https://www.itu.int/osg/spu/publications/internetofthings/
    IHS.( 2016 ). IoT platforms:enabling the iternet of tings, March 2016. From
    https://cdn.ihs.com/www/pdf/enabling-IOT.pdf
    IIoT World ( 2018 ) . An overview of the IoT security market report 2017-2022. From
    https://iiot-world.com/reports/an-overview-of-the-iot-security-market-report-2017-2022/
    Jewer, J. (2018). Patients’ intention to use online postings of ED wait times: A modified UTAUT model. International journal of medical informatics, 112, 34-39.
    Khalilzadeh, J., Ozturk, A. B., & Bilgihan, A. (2017). Security-related factors in extended UTAUT model for NFC based mobile payment in the restaurant industry. Computers in Human Behavior, 70, 460-474.
    Kannan, V. R., & Tan, K. C. (2005). Just in time, total quality management, and supply chain management: understanding their linkages and impact on business performance. Omega, 33(2), 153-162.
    Li, D., Browne, G. J., & Wetherbe, J. C. (2006). Why do internet users stick with a specific web site? A relationship perspective. International journal of electronic commerce, 10(4), 105-141.
    Miltgen, C. L., Popovič, A., & Oliveira, T. (2013). Determinants of end-user acceptance of biometrics: Integrating the “Big 3” of technology acceptance with privacy context. Decision Support Systems, 56, 103-114.
    METOVA. ( 2018 ). The connected home – survey shows “Smart Home” tech is taking over. From
    https://metova.com/the-connected-home-survey-shows-smart-home-tech-is-taking-over/
    Morosan, C., & DeFranco, A. (2016). It's about time: Revisiting UTAUT2 to examine consumers’ intentions to use NFC mobile payments in hotels. International Journal of Hospitality Management, 53, 17-29.
    Nysveen, H., & Pedersen, P. E. (2016). Consumer adoption of RFID-enabled services. Applying an extended UTAUT model. Information Systems Frontiers, 18(2), 293-314.
    Neuman, W. L. (2000). Social research methods: Quantitative and qualitative methods. Boston, MA: Allyn & Bacon.
    Nicola. ( 2003 ). Smart home – a Definition. From
    http://www.housingcare.org/downloads/kbase/2545.pdf
    Reinisch, C., Kofler, M. J., Iglesias, F., & Kastner, W. (2011). Thinkhome energy efficiency in future smart homes. EURASIP Journal on Embedded Systems, 2011, 1.
    Rose, Karen, Scott Eldridge, and Lyman Chapin. ( 2015 ) "The internet of things: An overview." The Internet Society ( ISOC ) , pp.1-50.
    Shiau, W.-L., & Luo, M. M. (2012). Factors affecting online group buying intention and satisfaction: A social exchange theory perspective. Computers in Human Behavior, 28(6), 2431-2444.
    Shin, D. H. (2009). Towards an understanding of the consumer acceptance of mobile wallet. Computers in Human Behavior, 25(6), 1343-1354.
    Slade, E. L., Dwivedi, Y. K., Piercy, N. C., & Williams, M. D. (2015). Modeling consumers’ adoption intentions of remote mobile payments in the United Kingdom: extending UTAUT with innovativeness, risk, and trust. Psychology & Marketing, 32(8), 860-873.
    Satpathy, L., & Mathew, A. (2007). Technology to Aid Aging in Place-New Opportunities and Challenges. VDM Verlag.
    Tsu Wei, T., Marthandan, G., Yee-Loong Chong, A., Ooi, K. B., & Arumugam, S. (2009). What drives Malaysian m-commerce adoption? An empirical analysis. Industrial Management & Data Systems, 109(3), 370-388.
    Tayie, S. (2005). Research methods and writing research proposals. Quezon City,Philippines: Pathways to Higher Education.
    Vallati, C., Virdis, A., Mingozzi, E., & Stea, G. (2016). Mobile-edge computing come home connecting things in future smart homes using LTE device-to-device communications. IEEE Consumer Electronics Magazine, 5(4), 77-83.
    Venkatesh, V., Thong, J. Y., & Xu, X. (2012). Consumer acceptance and use of information technology: extending the unified theory of acceptance and use of technology. MIS quarterly, 157-178.
    Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS quarterly, 425-478.
    Walsh, J. P., Kiesler, S., Sproull, L. S., & Hesse, B. W. (1992). Self-selected and randomly selected respondents in a computer network survey. The Public Opinion Quarterly, 56(2), 241-244.
    Wu, Y. L., Tao, Y. H., & Yang, P. C. (2007, December). Using UTAUT to explore the behavior of 3G mobile communication users. In 2007 IEEE International Conference on Industrial Engineering and Engineering Management (pp. 199-203). IEEE.
    Yang, Y., Wu, L., Yin, G., Li, L., & Zhao, H. (2017). A survey on security and privacy issues in internet-of-things. IEEE Internet of Things Journal, 4(5), 1250-1258.
    Yang, K., & Kim, H. Y. (2012). Mobile shopping motivation: an application of multiple discriminant analysis. International Journal of Retail & Distribution Management, 40(10), 778-789.
    Zhang, N., Demetriou, S., Mi, X., Diao, W., Yuan, K., Zong, P., ... & Gunter, C. A. (2017). Understanding IoT security through the data crystal ball: where we are now and where we are going to be. arXiv preprint arXiv:1703.09809.

    下載圖示 校內:2024-08-01公開
    校外:2024-08-01公開
    QR CODE