簡易檢索 / 詳目顯示

研究生: 蘇國誌
Su, Kuo-Chih
論文名稱: 牙科生物力學之流固耦合模擬
Fluid-Structure Interactive Simulation for Dental Biomechanics
指導教授: 張志涵
Chang, Chih-Han
莊淑芬
Chuang, Shu-Fen
學位類別: 博士
Doctor
系所名稱: 工學院 - 生物醫學工程學系
Department of BioMedical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 91
中文關鍵詞: 齒內液體流動流體動力學理論牙髓神經刺激牙科生物力學流固耦合
外文關鍵詞: Dentinal fluid flow, Hydrodynamic theory, Pulpal nerve stimulation, Dental biomechanics, Fluid-structure interaction
相關次數: 點閱:119下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 流體動力學理論(Hydrodynamic theory)是目前牙科中最為廣泛接受的牙齒疼痛理論機制。日常生活與牙科治療中,當牙齒受到外界的刺激,會導致牙髓腔內液體產生流動,引起牙齒疼痛。本研究將利用流固耦合(Fluid-Structure Interaction)的數值模擬分析方法探討牙齒受外界刺激後牙髓腔內液體流動的情況。本研究主要分成四部分:(1)利用體外實驗的方式來評估當牙齒受到外界刺激時,牙髓腔內的液體流出體積,並與流固耦合分析結果作比對。此實驗方法為將大臼齒根部移除,並將牙髓腔連接到毛細的小管並充滿水。給予大臼齒表面三個不同力量大小的垂直力(50N, 100N和150N),量測毛細管中液體的移動的情形。建立與實驗相同的三維數值模型,並使用流固耦合分析驗證當牙齒受到不同大小的外力負載後,模擬結果與實驗的正確性。(2)建立完整單牙根小臼齒的流固耦合模型,且給予牙齒咬合面上,垂直向下不同負載速度的外力(負載大小皆從0N逐漸增加到100N),並評估對於牙髓腔內液體的影響。(3)使用相同完整單牙根小臼齒的流固耦合模型,分別給予牙齒不同方向負載,並評對於牙齒牙髓腔內液體的影響。(4)探討牙齒咀嚼不同材料性質的食物,與咀嚼時不同的咬合速度時,對於牙齒牙髓腔內液體的影響。
    研究結果顯示,流固耦合模擬後的結果與體外實驗結果趨勢相似,當給予牙齒的外力後,會導致牙髓腔內液體流出,當給予的力量越大,從牙髓腔流出的液體體積越多。當施以不同負載速度的外力後,也對於牙髓腔內液體速度有影響。當牙齒受到不同方向的外力負載後,水平力不僅會使牙齒結構容易產生變形而斷裂,也會導致腔內液體流動速度較快而使牙齒較容易產生疼痛,這應該是水平力產生較大的彎曲效應所造成的。當牙齒咬到高楊氏係數的食物時,會產生牙齒高應力與大變形,在牙齒骨頭上有較高的反作用力,而且在牙髓腔內,液體的流動速度也較快,另外快速地咀嚼食物時也會導致牙髓腔內液體的流動速度較快,因此導致牙齒的疼痛。本研究,為首次利用流固耦合模擬提供的完整資訊,來評估牙科生物力學。

    Hydrodynamic theory is the most widely accepted theory explaining dental pain. An external stimulus on teeth during daily activities or clinical dental treatments may cause fluid flow in the dental pulp and induce dental pain. This study used the fluid-structure interaction (FSI) to simulate the fluid flow in dental pulp when teeth are subjected to external stimuli. This study was divided into four parts. Firstly the fluid flow behavior in the pulp chamber resulting from external mechanical stimulus was evaluated through in-vitro, and compared with the corresponding FSI simulation. In the experiment the root of one molar tooth was removed. The pulp chamber was filled with water and connected to a capillary. Vertical forces, 5N, 100N and 150N respectively were given on tooth crown. The fluid movement in the capillary was observed. Corresponding 3D model was created in FSI simulation to compare with experimental results. The second part of this study created an intact premolar tooth FSI model. Various loading rates of vertical, along occlusion direction, transient forces, from 0 to 100 N, were applied on the occlusal surface to simulate the fluid flow responses. The third part, using the same premolar model simulated dental intrapulpal responses under transient force, from 0 to 100 N, with various directions. The fourth part investigated the effects of food property, elastic modulus, and chewing speed on the dentinal fluid flow during mastication.
    The results showed that FSI simulation results are similar as that of the experimental results. The external compression loading resulted in pulp fluid outflow. The force magnitude influences the fluid outflow volume, while the loading rate affects the fluid flow velocity, at both coronal pulp wall and radicular pulp. For the effect of force direction, the horizontal force not only increases the risk of tooth structure failure but also enhances the fluid flow velocity at the coronal pulp, which increasing the possibility of tooth pain. This should due to the large bending effect generated by this horizontal force. Masticating hard food, high elastic modulus, would induce high stress and large deformation on the tooth structure which transferred a high reaction force on the bone. This would cause faster dentinal fluid flow within the pulp. Combining with the fast chewing speed, the hard food particles can easily cause the fluid flow velocity in the radicular pulp reaching the tooth pain threshold, triggering dental pain. In conclusion, it is demonstrated, for the first time, that the FSI simulation can provide more complete information for the evaluation of dental biomechanics.

    Contents Abstract I 中文摘要 III 誌謝 V Contents VI Figure Captions VIII Table Captions XIII Chapter 1. General Introduction 1 1.1 Problem Description 1 1.2 Overviews of dental pain and hydrodynamic theory 2 1.3 Literature review 5 1.3.1 Dentinal fluid flow measurement device 5 1.3.2 Dental pain threshold 7 1.3.3 Effect of deformation in pulp wall 9 1.3.4 Effect of mechanical stimulation 11 1.3.5 Dental biomechanics during food mastication 15 1.4 Fluid-structure interaction (FSI) 16 1.5 Motivation and objectives 19 Chapter 2. Materials and methods 20 2.1 FSI model validation by comparing with experiment 20 2.1.1 Experiment design 20 2.1.2 FSI modeling 22 2.1.2.1 Process of fluid-structure interaction in ANSYS Workbench 23 2.2 Evaluation of dentinal fluid flow behaviors in an intact tooth 27 2.2.1 Create FSI simulation models 27 2.2.2 Material properties of 3D simulation model 29 2.2.3 Boundary conditions and loading conditions 30 2.2.3.1 Loading conditions for various loading rate 31 2.2.3.2 Loading conditions for loading in various directions 33 2.2.3.3 Loading conditions for masticated food particles 34 Chapter 3. Results 38 3.1 Validation of the FSI methods 38 3.1.1 Results of the experiment 38 3.1.2 Results of FSI 39 3.2 Effect of various loading rate for intact tooth 42 3.3 Effect of loading direction 46 3.4 Effect of masticated food 53 Chapter 4. Discussion 59 4.1 Validation of the FSI methods 59 4.2 Evaluation of various loading rate for intact tooth 62 4.3 Investigation of dentinal fluid flow during loading in various directions 64 4.4 Investigation of dentinal fluid flow during masticated food 67 4.5 Limitations 69 Chapter 5. Conclusion and future work 70 5.1 Conclusion 70 5.2 Future work 72 References 73 Appendix A: Convergence tests 78 Appendix B: Reynolds number 81 Appendix C: Convergence tests for intact tooth model 82 Appendix D: Convergence tests for masticated food model 85

    Addy, M. (2002). Dentine hypersensitivity: new perspectives on an old problem. International Dental Journal, 4, 367-375.

    Bartold, P. (2008). Dentinal hypersensitivity: a review. Australian dental journal, 51 (3), 212-218.

    Belli, R., Sartori, N., Peruchi, L. D., Guimaraes, J. C., Araujo, E., Monteiro, S., Jr., Baratieri, L. N., & Lohbauer, U. (2010). Slow progression of dentin bond degradation during one-year water storage under simulated pulpal pressure. Journal of Dentistry, 38 (10), 802-810.

    Brännström, M. (1963). Dentin sensitivity and aspiration of odontoblasts. Journal of the American Dental Association, 55, 366-369.

    Brännström, M., Linden, L. A., & Aström, A. (1967). The hydrodynamics of the dental tubule and of pulp fluid. A discussion of its significance in relation to dentinal sensitivity. Caries Research, 1 (4), 310-317.

    Brännström, M., Linden, L. A., & Johnson, G. (1968). Movement of dentinal and pulpal fluid caused by clinical procedures. Journal of Dental Research, 47 (5), 679-682.

    Chang, W. J., & Lin, C. L. (2010). Estimation of the retainer height biomechanical contribution in posterior resin-bonded fixed partial dentures: a structural-thermal coupled finite element analysis. Medical and Biological Engineering and Computing, 48 (11), 1115-1122.

    Charoenlarp, P., Wanachantararak, S., Vongsavan, N., & Matthews, B. (2007). Pain and the rate of dentinal fluid flow produced by hydrostatic pressure stimulation of exposed dentine in man. Archives of Oral Biology, 52 (7), 625-631.

    Chuang, S. F., Chang, C. H., & Chen, T. Y. (2011). Contraction behaviors of dental composite restorations-finite element investigation with DIC validation. Journal of the Mechanical Behavior of Biomedical Materials, 4 (8), 2138-2149.

    De Vree, J., Spierings, T. A. M., & Plasschaert, A. (1983). Materials Science A Simulation Model for Transient Thermal Analysis of Restored Teeth. Journal of Dental Research, 62 (6), 756-759.

    Dejak, B., Mlotkowski, A., & Romanowicz, M. (2003). Finite element analysis of stresses in molars during clenching and mastication. Journal of Prosthetic Dentistry, 90 (6), 591-597.

    Elgalaid, T., Youngson, C., McHugh, S., Hall, A., Creanor, S., & Foye, R. (2004). In vitro dentine permeability: the relative effect of a dentine bonding agent on crown preparations. Journal of Dentistry, 32 (5), 413-421.

    Er, O., Yaman, S. D., & Hasan, M. (2007). Finite element analysis of the effects of thermal obturation in maxillary canine teeth. Oral Surgery Oral Medicine Oral Pathology Oral Radiology and Endodontology, 104 (2), 277-286.

    Guccione, J. M., Kassab, G. S., & Ratcliffe, M. (2010). Computational Cardiovascular Mechanics: Modeling and Applications in Heart Failure. Springer.

    Gysi, A. (1900). An attempt to explain the sensitiveness of dentine. British Journal of Science, 43, 865-868.

    Haegerstam, G., Olgart, L., & Edwall, L. (1975). The excitatory action of acetylcholine on intradental sensory units. Acta Physiologica Scandinavica, 93 (1), 113-118.

    Hargreaves, K. M., & Goodis, H. E. (2002). Seltzer and Bender's dental pulp. Quintessence Pub. Co.

    Hermanstyne, T. O., Markowitz, K., Fan, L., & Gold, M. S. (2008). Mechanotransducers in rat pulpal afferents. Journal of Dental Research, 87 (9), 834-838.

    Kato, A., & Ohno, N. (2009). Construction of three-dimensional tooth model by micro-computed tomography and application for data sharing. Clinical Oral Investigations, 13 (1), 43-46.

    Kim, S. Y., Ferracane, J., Kim, H. Y., & Lee, I. B. (2010). Real-time measurement of dentinal fluid flow during amalgam and composite restoration. Journal of Dentistry, 38 (4), 343-351.

    Langeland, K., & Yagi, T. (1972). Investigations on the innervation of teeth. International dental journal, 22 (2), 240-269.

    Leung, J. H., Wright, A. R., Cheshire, N., Crane, J., Thom, S. A., Hughes, A. D., & Xu, Y. (2006). Fluid structure interaction of patient specific abdominal aortic aneurysms: a comparison with solid stress models. Biomedical Engineering Online, 5, 33.

    Lin, M., Liu, S., Niu, L., Xu, F., & Lu, T. J. (2011). Analysis of thermal-induced dentinal fluid flow and its implications in dental thermal pain. Archives of Oral Biology, 56 (9), 846-854.

    Lin, M., Luo, Z. Y., Bai, B. F., Xu, F., & Lu, T. J. (2011). Fluid mechanics in dentinal microtubules provides mechanistic insights into the difference between hot and cold dental pain. PLoS One, 6 (3), e18068.

    Lin, M., Xu, F., Lu, T. J., & Bai, B. F. (2010). A review of heat transfer in human tooth-experimental characterization and mathematical modeling. Dental Materials, 26 (6), 501-513.

    Linsuwanont, P., Versluis, A., Palamara, J. E., & Messer, H. H. (2008). Thermal stimulation causes tooth deformation: a possible alternative to the hydrodynamic theory? Archives of Oral Biology, 53 (3), 261-272.

    Marshall Jr, G. W. (1993). Dentin: Microstructure and characterization. Quintessence international, 24 (9), 606-617.

    Matthews, B., & Vongsavan, N. (1994). Interactions between neural and hydrodynamic mechanisms in dentine and pulp. Archives of Oral Biology, 39 Suppl, 87S-95S.

    Mazzitelli, C., Monticelli, F., Osorio, R., Casucci, A., Toledano, M., & Ferrari, M. (2008). Effect of simulated pulpal pressure on self-adhesive cements bonding to dentin. Dental Materials, 24 (9), 1156-1163.

    McGuinness, N. J. P., Wilson, A. N., Jones, M. L., & Middleton, J. (1991). A stress analysis of the periodontal ligament under various orthodontic loadings. The European Journal of Orthodontics, 13 (3), 231-242.

    Mehta, N., Maloney, G. E., Bana, D. S., & Scrivani, S. J. (2009). Head, Face, and Neck Pain Science, Evaluation, and Management: An Interdisciplinary Approach. Wiley-Blackwell.

    Molony, D. S., Callanan, A., Kavanagh, E. G., Walsh, M. T., & McGloughlin, T. M. (2009). Fluid-structure interaction of a patient-specific abdominal aortic aneurysm treated with an endovascular stent-graft. Biomedical Engineering Online, 8, 24.

    Ni, C. W., Chang, C. H., Chen, T. Y., & Chuang, S. F. (2011). A multiparametric evaluation of post-restored teeth with simulated bone loss. Journal of the Mechanical Behavior of Biomedical Materials, 4 (3), 322-330.

    Orchardson, R., & Gillam, D. G. (2006). Managing dentin hypersensitivity. The Journal of the American Dental Association, 137 (7), 990-998.

    Paphangkorakit, J., & Osborn, J. W. (2000). The effect of normal occlusal forces on fluid movement through human dentine in vitro. Archives of Oral Biology, 45 (12), 1033-1041.

    Pashley, D. H. (1986). Dentin permeability, dentin sensitivity, and treatment through tubule occlusion. Journal of Endodontics, 12 (10), 465-474.

    Pashley, D. H. (1990). Mechanisms of dentin sensitivity. Dental Clinics of North Americ, 34 (3), 449-473.

    Pashley, D. H. (1996). Dynamics of the pulpo-dentin complex. Critical Reviews in Oral Biology and Medicine, 7 (2), 104-133.

    Pashley, D. H., Matthews, W. G., Zhang, Y., & Johnson, M. (1996). Fluid shifts across human dentine in vitro in response to hydrodynamic stimuli. Archives of Oral Biology, 41 (11), 1065-1072.

    Plesh, O., Bishop, B., & McCall, W. (1987). Mandibular movements and jaw muscles' activity while voluntarily chewing at different rates. Experimental neurology, 98 (2), 285-300.

    Po, J. M., Kieser, J. A., Gallo, L. M., Tesenyi, A. J., Herbison, P., & Farella, M. (2011). Time-frequency analysis of chewing activity in the natural environment. Journal of Dental Research, 90 (10), 1206-1210.

    Ratih, D., Palamara, J., & Messer, H. (2006). Minimizing dentinal fluid flow associated with gap formation. Journal of Dental Research, 85 (11), 1027-1031.

    Ratih, D. N., Palamara, J. E. A., & Messer, H. H. (2007). Dentinal fluid flow and cuspal displacement in response to resin composite restorative procedures. Dental Materials, 23 (11), 1405-1411.

    Reddy, J. N. (1993). An introduction to the finite element method. McGraw-Hill.

    Rees, J., & Jacobsen, P. (1997). Elastic modulus of the periodontal ligament. Biomaterials, 18 (14), 995-999.

    Souli, M., & Benson, D. J. (2010). Arbitrary Lagrangian-Eulerian and Fluid-structure Interaction: Numerical Simulation. ISTE.

    Takahashi, N., Kitagami, T., & Komori, T. (2007). Behaviour of teeth under various loading conditions with finite element method. Journal of oral rehabilitation, 7 (6), 453-461.

    Throckmorton, G., Buschang, B., Hayasaki, H., & Phelan, T. (2001). The effects of chewing rates on mandibular kinematics. Journal of oral rehabilitation, 28 (4), 328-334.

    Unemori, M., Matsuya, Y., Akashi, A., Goto, Y., & Akamine, A. (2001). Composite resin restoration and postoperative sensitivity: clinical follow-up in an undergraduate program. Journal of Dentistry, 29 (1), 7-13.

    Vongsavan, N., & Matthews, B. (1991). The permeability of cat dentine in vivo and in vitro. Archives of Oral Biology, 36 (9), 641-646.

    Wylie, S. G., & Wilson, P. R. (1994). An investigation into the pressure transmitted to the pulp chamber on crown cementation: a laboratory study. Journal of Dental Research, 73 (11), 1684-1689.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE