簡易檢索 / 詳目顯示

研究生: 廖培辰
Liao, Pei-chen
論文名稱: 利用DNA適體與金奈米棒增加局部表面電漿共振生物感測器的靈敏度
Enhancing the sensitivity of localized surface plasmon resonance (LSPR) biosensors using aptamers and gold nanorods
指導教授: 邱文泰
Chiu, Wen-Tai
共同指導教授: 陳奕帆
Chen, Yih-Fan
學位類別: 碩士
Master
系所名稱: 工學院 - 生物醫學工程學系
Department of BioMedical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 36
中文關鍵詞: 局部表面電漿共振適體金奈米棒丙型干擾素
外文關鍵詞: Localized surface Plasmon resonance, Aptamer, gold nanorod, Interferon gamma
相關次數: 點閱:165下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來局部表面電漿共振生物感測器引起許多注意,許多研究人員希望將此技術發展成居家照護檢測的工具。與表面電漿共振生物感測器相比,局部表面電漿共振生物感測器之光學儀器的架構可以比較簡單且體積較小。然而若不使用一些機制增加局部表面電漿共振感測器的靈敏度,則由於待測分子被捕捉於晶片表面時所造成之折射係數改變很小,產生的共振波長位移通常小於1 奈米。 當使用局部表面電漿共振生物感測器檢測分子量較小或是濃度較低的分子時,共振波長的位移將更小,造成量測上的困難。在本研究中,我們利用接有DNA的金奈米棒增加局部表面電漿共振生物感測器之靈敏度,使共振波長能隨著待測物的多寡而有較顯著的移動。研究中所使用的DNA適體與金奈米棒上的DNA經過特別設計,使它們透過鹼基配對而結合在一起時,讓金奈米棒可以非常靠近感測器之金屬表面。金奈米棒造成之電漿偶合效應及折射係數改變使局部表面電漿共振感測器的共振波長產生顯著位移。除此之外,調整金奈米棒的用量可以用於量測不同濃度範圍之待測物。在本研究中我們針對潛伏性肺結核篩檢的應用,研究以局部表面電漿共振感測器偵測丙型干擾素的效果。我們分別在單純緩衝溶液及含有血清的緩衝溶液中進行量測,成功於兩種緩衝液中得到檢量線。

    Localized surface plasmon resonance (LSPR) biosensors have attracted many attentions. Scientists want to develop this kind of biosensors into point-of-care diagnostics. The optical setups of localized surface plasmon resonance biosensor are simpler and compact in comparison with surface plasmon resonance biosensor. Because of the short evanescent depth, the resonance shift which result from changing refractive index on the surface is often smaller than 1 nm. Using LSPR biosensor to detect small molecules and targets which are low concentration is difficult. So, many enhance mechanisms have applied on these biosensors. In our thesis, we use DNA-conjugated nanorod to enhance the resonance shift of LSPR biosensor. The aptamer and DNA which conjugate on the gold nanorod has been designed. When these two strands of DNA hybridize, the gold nanorod will be very close to the metal surface which is fabricated on LSPR biosensor. Thus, the significantly resonance shift will appear. Gold nanorod can increase plasmon coupling and change the refractive index drastically. Furthermore, we can measure different concentration ranges of analyte by adjusting the amount of gold nanorod. In this study, we use LSPR biosensor to measure interferon-gamma. Interferon-gamma is a cytokine that can be detect in cultured white blood cells of latent tunerculosis patients. We have gained calibration curves in pure buffer and serum containing buffer, respectively.

    摘要 .............................................. I Abstract ............................................. II Index of Figures......................................... III Index of tables ......................................... V 1.1 Theory of localized surface plasmon resonance ..................... 1 1.2 LSPR v.s. SPR ...................................... 3 1.3 Recent development on localized surface plasmon resonance biosensors ....... 4 1.4 Motivation and objectives ...............................16 Chapter2. Materials and methods ...............................19 2.1 Materials .........................................19 2.2 Methods .........................................20 2.3 Mechanism for enhancing the LSPR sensitivity .....................20 Chapter3. Results and Discussion ..............................23 3.1 Quantification of interferon-gamma ...........................23 Chapter4. Conclusion and Future work............................33 References ..........................................34

    1. Willets, K.A. and R.P. Van Duyne, Localized surface plasmon resonance spectroscopy and sensing. Annu Rev Phys Chem, 2007. 58: p. 267-97.
    2. Sagle, L.B., et al., Advances in localized surface plasmon resonance spectroscopy biosensing. Nanomedicine (Lond), 2011. 6(8): p. 1447-1462.
    3. Estevez, M.C., et al., Trends and challenges of refractometric nanoplasmonic biosensors: a review. Anal Chim Acta, 2014. 806: p. 55-73.
    4. Sabine Szunerits, R.B., Sensing using localised surface plasmon resonance sensors. Chem Commun (Camb), 2012. 48: p. 8999-9010.
    5. Petryayeva, E. and U.J. Krull, Localized surface plasmon resonance: nanostructures, bioassays and biosensing--a review. Anal Chim Acta, 2011. 706(1): p. 8-24.
    6. Zhao, J., et al., Localized surface plasmon resonance biosensors. Nanomedicine (Lond), 2006. 1(2): p. 219-228.
    7. Srivastava, S.K., R.K. Verma, and B.D. Gupta, Theoretical modeling of a localized surface plasmon resonance based intensity modulated fiber optic refractive index sensor. Appl Opt, 2009. 48(19): p. 3796-3802.
    8. Hsu, C.Y., J.W. Huang, and K.J. Lin, High sensitivity and selectivity of human antibody attachment at the interstices between substrate-bound gold nanoparticles. Chem Commun (Camb), 2011. 47(3): p. 872-4.
    9. Tang, L., J. Casas, and M. Venkataramasubramani, Magnetic nanoparticle mediated enhancement of localized surface plasmon resonance for ultrasensitive bioanalytical assay in human blood plasma. Anal Chem, 2013. 85(3): p. 1431-1439.
    10. AW, O., et al., Al2O3 thin film growth on Si(100) using binary reaction sequence chemistry. . Thin Solid Films 1997. 292: p. 135-144.
    11. Haes, A.J., et al., Nanoscale Optical Biosensor: Short Range Distance Dependence of the Localized Surface Plasmon Resonance of Noble Metal Nanoparticles. J. Phys. Chem. B, 2004. 108: p. 6961-6968.
    12. Haes, A.J., et al., A Nanoscale Optical Biosensor: The Long Range Distance Dependence of the Localized Surface Plasmon Resonance of Noble Metal Nanoparticles. J. Phys. Chem. B, 2004. 108: p. 109-116.
    13. Park, J.H., et al., A regeneratable, label-free, localized surface plasmon resonance (LSPR) aptasensor for the detection of ochratoxin A. Biosens Bioelectron, 2014. 59: p. 321-327.
    14. W. Paige Hall, S.N.N., and Richard P. Van Duyne., LSPR Biosensor Signal Enhancement Using Nanoparticle-Antibody Conjugates. . J. Phys. Chem., 2011. 115: p. p. 1410-1414.
    35
    15. Wang, Y., J. Dostalek, and W. Knoll, Magnetic nanoparticle-enhanced biosensor based on grating-coupled surface plasmon resonance. Anal Chem, 2011. 83(16): p. 6202-7.
    16. Haes, A.J., et al., Localized surface plasmon resonance spectroscopy near molecular resonances. J Am Chem Soc, 2006. 128(33): p. 10905-10914.
    17. Zhao, J., et al., Resonance surface plasmon spectroscopy: low molecular weight substrate binding to cytochrome p450. J Am Chem Soc, 2006. 128(34): p. 11004-11005.
    18. Wang, J., et al., Magnetic nanoparticle enhanced surface plasmon resonance sensing and its application for the ultrasensitive detection of magnetic nanoparticle-enriched small molecules. Anal Chem, 2010. 82(16): p. 6782-6789.
    19. Soelberg, S.D., et al., Surface plasmon resonance detection using antibody-linked magnetic nanoparticles for analyte capture, purification, concentration, and signal amplification. Anal Chem, 2009. 81(6): p. 2357-2363.
    20. Sim, H.R., A.W. Wark, and H.J. Lee, Attomolar detection of protein biomarkers using biofunctionalized gold nanorods with surface plasmon resonance. Analyst, 2010. 135(10): p. 2528-2532.
    21. Lee, S.-W., et al., Highly sensitive biosensing using arrays of plasmonic Au nanodisks realized by nanoimprint lithography. ACS Nano, 2011. 5(2): p. 897-904.
    22. Sharpe, J.C., et al., Gold Nanohole Array Substrates as Immunobiosensors. Anal. Chem, 2008. 80: p. 2244-2249.
    23. Cooper, A.M., et al., Disseminated tuberculosis in interferon gamma gene-disrupted mice. J Exp Med, 1993. 178(6): p. 2243-2247.
    24. Fietta, A., et al., Comparison of a whole-blood interferon-gamma assay and tuberculin skin testing in patients with active tuberculosis and individuals at high or low risk of Mycobacterium tuberculosis infection. Am J Infect Control, 2003. 31(6): p. 347-353.
    25. Harada, N., et al., Comparison of the sensitivity and specificity of two whole blood interferon-gamma assays for M. tuberculosis infection. J Infect, 2008. 56(5): p. 348-353.
    26. Kimura, M., et al., Comparison between a whole blood interferon-gamma release assay and tuberculin skin testing for the detection of tuberculosis infection among patients at risk for tuberculosis exposure. J Infect Dis, 1999. 179(5): p. 1297-1300.
    27. Lee, J.Y., et al., Comparison of two commercial interferon-gamma assays for diagnosing Mycobacterium tuberculosis infection. Eur Respir J, 2006. 28(1): p. 24-30.
    28. Mazurek, G.H., et al., Comparison of a whole-blood interferon gamma assay with tuberculin skin testing for detecting latent Mycobacterium tuberculosis infection.
    36
    JAMA, 2001. 286(14): p. 1740-1747.
    29. Lee, J., et al., Comparison of whole-blood interferon-gamma assay and flow cytometry for the detection of tuberculosis infection. J Infect, 2013. 66(4): p. 338-345.
    30. Seneviratne, S.L., et al., Disseminated Mycobacterium tuberculosis infection due to interferon gamma deficiency. Response to replacement therapy. Thorax, 2007. 62(1): p. 97-99.
    31. Kim, N.H., S.J. Lee, and M. Moskovits, Aptamer-mediated surface-enhanced Raman spectroscopy intensity amplification. Nano Lett, 2010. 10(10): p. 4181-4185.
    32. Li, M., et al., Detection of adenosine triphosphate with an aptamer biosensor based on surface-enhanced Raman scattering. Anal Chem, 2012. 84(6): p. 2837-2842.
    33. Kitayama, Y. and T. Takeuchi, Localized Surface Plasmon Resonance Nanosensing of C-Reactive Protein with Poly(2-methacryloyloxyethyl phosphorylcholine)-Grafted Gold Nanoparticles Prepared by Surface-Initiated Atom Transfer Radical Polymerization. Anal Chem, 2014.
    34. Nie, X.M., et al., Plasmonic ELISA for the ultrasensitive detection of Treponema pallidum. Biosens Bioelectron, 2014. 58: p. 314-319.
    35. Vashist, S.K., Nanoparticles-Based Naked-Eye Colorimetric Immunoassays for In Vitro Diagnostics. Nanomedicine & Nanotechnology, 2014. 5(1).
    36. Yamamichi, J., et al., Surface chemical approach to single-step measurement of antibody in human serum using localized surface plasmon resonance biosensor on microtiter plate system. Anal Bioanal Chem, 2014.
    37. Marinakos, S.M., S. Chen, and A. Chilkoti, Plasmonic detection of a model analyte in serum by a gold nanorod sensor. Anal Chem, 2007. 79(14): p. 5278-5283.
    38. Yuan, J., et al., Detection of serum human epididymis secretory protein 4 in patients with ovarian cancer using a label-free biosensor based on localized surface plasmon resonance. Int J Nanomedicine, 2012. 7: p. 2921-2928.
    39. de la Rica, R. and M.M. Stevens, Plasmonic ELISA for the ultrasensitive detection of disease biomarkers with the naked eye. Nat Nanotechnol, 2012. 7(12): p. 821-824.
    40. Tuleuova, N., et al., Development of an aptamer beacon for detection of interferon-gamma. Anal Chem, 2010. 82(5): p. 1851-1857.
    41. Wang, C. and J. Irudayaraj, Gold nanorod probes for the detection of multiple pathogens. Small, 2008. 4(12): p. 2204-2208

    下載圖示 校內:2019-08-28公開
    校外:2019-08-28公開
    QR CODE