| 研究生: |
曾生雄 Tseng, Sheng-hsiung |
|---|---|
| 論文名稱: |
提升深次微米金氧半銅製程化學機械研磨(CMP)的厚度移除率及改善均勻度的細拋研磨系統最佳化之研究 Enhancing Remove Rate and Uniformity of The Deep Submicron CMOS Copper CMP Technology with Optimizing Soft Landing Polish System |
| 指導教授: |
方炎坤
Fang, Yean-kuen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電腦與通信工程研究所 Institute of Computer & Communication Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 100 |
| 中文關鍵詞: | 研磨平台 、研磨墊溝槽 、銅製程化學機械研磨 、研磨壓力 |
| 外文關鍵詞: | polishing platen leveling, polish pad grooves, Cu CMP, polishing pressure |
| 相關次數: | 點閱:85 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文研究利用最佳化銅製程化學機械研磨的細拋研磨步驟,改善和提升化學機械研磨系統最重要研磨均勻度。在適當的研磨移除率下,獲取較佳的研磨均勻度,並改善銅金屬殘留、銅碟陷與氧化層侵蝕等。銅化學機械研磨含粗磨及細磨兩步驟;同時含有化學反應和機械力學兩大部分,是一個非常複雜的動態反應機制。利用粗磨步驟快速移除大部分銅金屬層,剩下的殘留的銅層則由細磨步驟負責精細的去除。但在細磨的部驟中將同時面對研磨金屬銅/阻障層/介電層及氧化物等不同材料的挑戰,因此細磨具有高度的挑戰性。本文係針對這個挑戰性作系統化最佳化的研究。吾人利用晶圓半導體廠八吋和十二吋所使用的美商應用材料所生產的銅製程化學研磨機(Mirra-Mesa),配合半導體廠的晶片生產製程技術,研究細磨製程研磨效率的改善;包括(1) 研磨壓力對研磨移除率和均勻度的影響,(2) 研磨平台對研磨移除率和均勻度的影響,(3) 研磨墊溝槽深度對研磨移除率和均勻度的影響。研究結果得到一個極佳化的細磨製程,歷經半導體工廠一年的實地驗證,確實有效。值得一提的是,這些研磨壓力的變更、研磨平台的平整度和研磨墊溝槽深度的控制,對厚度和均勻的最佳化改善並不需要重新研發設計機台設備或研磨材料,就可執行。
In this thesis, we focused on the optimization of the soft landing polish step in a Cu chemical mechanical planarization (Cu CMP) process. With the optimized soft landing polish, one can achieve a better uniformity and less Cu residue, dishing, erosion, etc.
Cu CMP has both bulk polishing and soft landing polish steps to flat wafer surface. During the CMP process, bulk polishing step removes the most Cu layer firstly, then using the soft landing polish step to eliminate the Cu residue preciously. However, the soft landing polish would face various materials such as Cu metal layer, barrier, dielectric layer and oxide during etc in the same time, thus should be paid more attention.
In this work, we adopted the Cu CMP machine (Mirra Mesa, Applied Materials) commonly used in an 8” and 12” foundry for study. The optimization study includes (1) the effect polishing pressure on uniformity; (2) the effect of polishing platen leveling on uniformity; (3) the effect depth of polish pad grooves on remove rate and uniformity. After study in a production line for more than one year, we obtained an applicable and better procedure for the soft landing polish. It is worthy to note, the polishing working pressure modify and PAD platen surface leveling control and PAD surface groove depth control the remove rate and uniformity that be improved in the optimized procedure can be executed without change the design of CMP equipment.
[1]Yuzhuo Li, Microelectronic Applications Of Chemical Mechanical Planarization ,1st Edition John Wiley & SonsInc., Hoboken, New Jersey, United States of America, 2007.
[2]Michael Quirk, Julian Serda 著,劉文超、許渭州校閱,羅文雄等譯,半導體製造技術,1st Edition 滄海書局,台中,台灣 2004。
[3]王建榮等編譯,半導體平坦化CMP技術,全華科技圖書。
[4]葉文冠,半導體元件設計與技術開發,國立高雄大學電機工程學系, tsmc training material, pp. 350-351, 2009。
[5]王廷君編著訓練教材,“CMP Process & equipment introduction”, tsmc.
[6]Clark Chang, “AMAT CuCMP Process”, Applied Materials, 2001.
[7]陳奕任,李文熙, ”金屬銅化學機械研磨之腐蝕缺陷量測與模型化”,國立成功大學電機工程學系碩士論文,民國96年6月。
[8]孫國郎,方炎坤, ” 化學機械研磨(CMP)應用在不同絕緣層與金屬層終點偵測技術的研究”,國立成功大學電機工程學系碩士論文,民國94年6月。
[9]P. Wrschka, J. Hernandez, G. S. Oehrlein, and J. King, “Chemical Mechanical Planarization of Copper Damascene Structures”, Journal of The Electrochemical Society, 147 (2), pp. 706-712 ,2000.
[10]Danilo Castillo-Mejia and Stephen Beaudoin, “A Locally Relevant Prestonian Model for Wafer Polishing”, Journal of The Electrochemical Society, Vol.150 (2), pp. G96-G102, 2003.
[11]Hisanori Matsuo, Seiichi Kondo, Akira Ishikawa, Koichi Fukaya, Nobuyoshi Kobayashi, Takamaro Kikkawa, “Effect of frictional force vector on delamination in Cu/low-k integration”, Microelectronic Engineering Vol.83, pp. 2146–2149 , 2006.
[12]Y. Gotkis and S. Guha, “Cu-CMP for Dual Damascene Technology: Prestonian vs. Non-Prestonian Regimes of Cu Removal”, Journal of Electronic Materials, Vol. 30, No. 4, 2001
[13]Ship-Peng Lo & Yeou-Yih Lin & Jen-Ching Huang, “Analysis of retaining ring using finite element simulation in chemical mechanical polishing process”, Int J Adv Manuf Technol Vol.34: pp.547–555 ,2007.
[14]Norm V.Gitis, Jun Xiao, Ashok Kumar, Arun K. Sikder, “Advanced Specification and Tests of CMP Retaining Rings”, CMP-MIC Catalog No.04 IMIC-900P ,2004.
[15]Q. Luo, S. Ramarajan, S. V. Babu, “Modification of the Preston equation for the chemical-mechanical”, Thin Solid Films Vol.335, pp.160-167, 1998.
[16]J. Tony Pan, Ping Li, Kapila Wijekoon, Stan Tsai, Fritz Redeker, “Copper CMP and Process Control”, pp. CMP-MIC 99 Conference ,Feb.1999.
[17]Rohm and Haas Electronic Materials CMP Technologies Taiwan Branch, “CMP Consumables & Applications Introduction Applications Introduction”, Rohm and Haas Electronic Materials, pp.16-19, Aug. 2006.
[18]Markus Forsberg, “ Chemical Mechanical Polishing of Silicon and Silicon Dioxide in Front End Processing”, Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 991.65 pp. Uppsala ISBN 91-554-5995-1, 2004.
[19]Yao-Chen Wang, Tian-Shiang Yang, “Modeling and calculation of slurry-chemistry effects on chemical–mechanical planarization with a grooved pad”, J Eng Math Vol.63: pp. 33–50, 2009.
[20]Liang Chen, “Breakthrough technology for CMP”, Semiconductor Fabtech, 24th Edition, pp.137-141, October 2004.
[21]P. B. Zantye, A. K. Sikder, N. Gulati, and Ashok Kumar, “Study of slurry selectivity and end point detections in Cu-CMP process”, CMP-MIC Conference, pp. IMIC - 800P/00/0378 ,Feb. , 2003
[22]K.Wijekoon.etal., “Tungsten CMP Process Developed”, Solid State Technology pp.55 , April 1998.
校內:2027-07-13公開