簡易檢索 / 詳目顯示

研究生: 張立蓁
Chang, Li-Chen
論文名稱: 都會區公共自行車租借系統之設計與營運方式研究
Design and Management of Urban Bike Sharing Systems
指導教授: 王逸琳
Wang, I-Lin
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業與資訊管理學系
Department of Industrial and Information Management
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 83
中文關鍵詞: 綠色交通公共自行車租借系統網路設計車輛配置運補問題多元商品網路流量
外文關鍵詞: Urban bike sharing network, Network design, Fleet deployment and transportation, Bike redistribution, Multicommodity network flow
相關次數: 點閱:101下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來由於提倡綠色通勤,以短程接駁為目的的都會區公共自行車租借系統因而興起,其中以法國巴黎的Velib最為成功,台灣則甫於2008年在台北和高雄實施公共自行車租借系統。本研究以都會區公共自行車租借系統為研究對象,探討公共自行車租借網路設計、自行車配置運補等議題。其中租借網路設計為P中位問題(P-median Problem)和固定費用設施區位問題(Fixed Charge Location Problem)的延伸,在給定有限的候選租借站個數、一天內每小時的租借者起訖點需求情形及各候選租借站吸收租借需求的情況下,本研究發展一套整數規劃模式(Bike Sharing Network Design,BSND),並提出兩類粒子群演算法以求解具有最小設置成本的租借站數目、地點及其停車柱數目。針對自行車的配置和運補問題,我們建構一含權重衡量的單車種最小成本之多元商品網路流量模式(Single-type Bike Redistribution,STBR),以求解各租借站在各小時每車次應配置的自行車數及其最小成本的運補方式,再依其結果發展運補車模式(Distribution Vehicle Model)配置最佳運補路線下的運補車數目。此外,我們亦以營運者的觀點設計一滿足既定服務水準下的最小化運補時間成本之單目標模式,以提供營運者在其服務水準設定下的各時期自行車輛的運補配置方式建議。最後,為增加額外的廣告營收,我們進一步將自行車細分成有張貼廣告之廣告車及無張貼廣告之一般車兩大類,以最小成本之多元商品網路流量模式(Multi-type Bike Redistribution,MTBR)探討兩類自行車之運補及配置機制,以達到特定站點或路線的廣告曝光度保證,並另外建議廣告費用的設置方式,進而提升其營運競爭力。

    Recently, promotion of the urban bike sharing systems becomes a popular public policy in many contries due to Green Transportation. Velib in Paris is the most successful case. Similarly, Taipei and Kaohsiung respectively implement “YouBike” and “C-Bike”. This paper investigates three major problems encountered in the design and management of urban bike sharing systems. The first problem seeks the best locations of stations and number of bike stands to be built, which can be viewed as a specialized P-median Problem or Fixed Charge Location Problem, based on survey data which records hourly origin-destination preferences of commuters. We give an integer programming model, named as the Bike Sharing Network Design model(BSND), and two particle swarm optimization algorithms to solve the first problem. The second problem, named as the Single-type Bike Redistribution model(STBR), deals with single-type bike redistribution planning that solves for the best deployment of bikes between bike-sharing stations to minimize the weighted sum of single-type bike redistribution costs and the commuting costs caused by the imbalance of bike supplies and commuters' demand. We give a minimum cost multicommodity network flow model, and then solve for the minimum number of distribution vehicles required by a minimun cost network flow model. Morever, based on the viewpoints from the managers of bike sharing systems, we propose a single-objective model that only minimizes the bike redistribution costs while preserving a service level that guarantees the commuting costs to be bounded above by a specified factor to their minimum value. The third problem, named as Multi-type Bike Redistribution model(MTBR), considers the required advertisement exposure rate at specific stations or on specific riding paths to deal with multi-type bike deployment planning that solves for the best deployment of bikes of each type between bike-sharing stations. By comparing MTBR with STBR, we can suggest the range of the advertisement charges to the managers for providing affordable bike sharing services. Some numerical examples are also conducted and illustrated to show how our models work.

    摘要i Abstract ii 誌謝 iv 表目錄 viii 圖目錄 x 第一章緒論.................................................1 1.1 研究背景...............................................1 1.2 研究動機與目的.....................................4 1.3 研究問題...............................................5 1.4 論文架構...............................................6 第二章文獻探討..........................................8 2.1 公共自行車租借網路設計文獻探討.........................8 2.1.1 站點選擇因素相關文獻................................8 2.1.2 區位設施理論應用於運輸場站選擇文獻.................11 2.1.3 粒子群演算法......................................13 2.2 公共自行車租借車輛配置運補相關文獻.....................16 2.2.1 汽車租借車輛配置運補相關文獻........................16 2.2.2 貨櫃調度相關文獻...................................17 2.3 小結..............................................19 第三章公共自行車租借網路設計問題...........................21 3.1 問題描述與假設.....................................21 3.2 整數規劃模式(BSND)..................................22 3.2.1 參數與變數定義...................................22 3.2.2 BSND模式說明........................................23 3.3 PSO演算法...........................................25 3.3.1 PSO演算法流程說明.................................25 3.3.2 縮減候選租借站點個數...............................27 3.3.3 站點設置集合轉換方法...............................28 3.3.4 適應值計算說明....................................29 3.4 BSND模式範例........................................30 3.5 數值分析............................................32 3.5.1 網路圖產生方式....................................32 3.5.2 數值分析...........................................33 3.6 小結...............................................34 第四章單車種自行車車輛配置運補問題........................36 4.1 問題描述與假設.....................................36 4.2 最小成本多元商品流量模式(STBR).......................38 4.2.1 參數與變數定義定義...............................38 4.2.2 STBR模式情境說明...............................39 4.2.3 模式說明............................................43 4.3 運補車模式.........................................45 4.3.1 運補車模式情境說明................................45 4.3.2 運補車模式說明....................................47 4.4 STBR模式範例..........................................49 4.5 數值測試..............................................52 4.5.1 STBR數值測試........................................52 4.5.2 實例數值測試......................................53 4.6 單目標模式.......................................54 4.6.1 單目標模式說明................................54 4.6.2 單目標模式範例.....................................56 4.7 小結...............................................57 第五章多車種自行車車輛配置運補問題..........................58 5.1 問題描述與假設......................................58 5.2 最小成本多元商品流量模式(MTBR)..........................61 5.2.1 參數與變數定義....................................61 5.2.2 前置作業模式說明.....................................62 5.2.3 多車種車輛配置運補模式說明............................64 5.2.4 廣告費用設置說明.....................................67 5.3 MTBR模式範例..........................................68 5.4 MTBR數值測試..........................................69 5.5 小結............................................71 第六章結論與未來研究方向....................................72 6.1 研究結論..............................................72 6.1.1 公共自行車租借網路設計問題............................72 6.1.2 單車種自行車車輛配置運補問題..........................73 6.1.3 多車種自行車車輛配置運補問題..........................74 6.2 未來研究方向建議.......................................75 參考文獻..................................................78

    Ahuja, R. K., Magnanti, T. L. and Orlin, J. B. Network flows: theory, algorithms, and applications. Prentice-Hall, New Jersey, 1993.
    Alp, O., Erkut, E. and Drezner, Z. An e±cient genetic algorithm for the p-median problem. Annals of Operations Research, 122, 21-42, 2003.
    Al-Sultan, K. and Al-Fawzan, M. A tabu search approach to the uncapacitated facility location problem. Annals of Operations Research, 86, 91-103, 2004.
    Aydin, M. E. and Fogarty, T. C. A distributed evolutionary simulated annealing algorithm for combinatorial optimisation problems. Journal of Heuristics, 10,
    269-292, 2004.
    Balinski, M. L. Integer programming: Methods, uses, computation. Management Science, 12(3), 253-313, 1965.
    Banks, A., Vincent, J. and Anyakoha, C. A review of particle swarm optimization. Part I: background and development. Natural Computing, 6(4), 467-484, 2007.
    Chankong, V. and Haimes, Y. Y. Multiobjective decision making:theory and methodology. North-Holland Amsterdam, 1983.
    Chaudhry, S. S., He, S. and Chaudhry, P. E. Solving a class of facility location problems using genetic algorithm. Expert Systems, 20, 86-91, 2003.
    Cheung, R. and Chen, C. A two-stage stochastic network model and solution methods for the dynamic empty container allocation problem. Transportation Science,32(2), 142–162, 1998.
    Chien, S. and Qin, Z. Optimization of bus stop locations for improving transit accessibility. Transportation Planning and Technology, 27(3), 211-227, 2004.
    Choong, S. T., Cole, M. H. and Kutanoglu, E. Empty container management for intermodal transportation networks. Transportation Research Part E: Logistics
    and Transportation Review, 38(6), 423 - 438, 2002.
    Church, R. L. and ReVelle, C. S. Theoretical and computational links between the p-median,location setcovering and the maximal covering location problem.
    Geographical Analysis, 8, 406-415, 1976.
    Crainic, T., Gendreau, M. and Dejax, P. Dynamic and stochastic models for the allocation of empty containers. Operations Research, 41(1), 102-126, 1993.
    Demetsky, M. and Lin, B. B. M. Bus stop location and design. Transportation Engineering Journal of ASCE, 108, 313-327, 1982.
    Edelstein, M. and Melnyk, M. The pool control system. Interfaces, 8(1), 21-36, 1977.
    Fink, A. and Reiners, T. Modeling and solving the short-term car rental logistics problem. Transportation Research Part E: Logistics and Transportation Review,42(4), 272 - 292, 2006.
    Gao, Q. An operational approach for container control in liner shipping. Logistics and Transportation Review, 30(3), 267-282, 1994.
    Groβ, D. R. P., Hamacher, H. W., Horn, S. and Schobel, A. Stop location design in public transportation networks: covering and accessibility objectives. Top, 2006.
    Guner, A. R. and Sevkli, M. A continuous particle swarm optimization algorithm for uncapacitated facility location problem. Ant Colony Optimization and Swarm Intelligence, 4150, 316-323, 2006.
    Guner, A. R. and Sevkli, M. A discrete particle swarm optimization algorithm for uncapacitated facility location problem. Journal of Artificial Evolution and Applications, 1-9, 2008.
    Hakimi, S. L. Optimum locations of switching centers and the absolute centers and medians of a graph. Operations Research, 12(3), 450-459, 1964.
    Jaramillo, J. H., Bhadury, J. and Batta, R. On the use of genetic algorithms to solve location problems. Computers and Operations Research, 29(6), 761 - 779, 2002.
    Jula, H., Chassiakos, A. and Ioannou, P. Port dynamic empty container reuse. Transportation Research Part E: Logistics and Transportation Review, 42(1), 43 - 60,2006.
    Kennedy, J. and Eberhart, R. Particle swarm optimization. IEEE International Conference on Neural Networks, 1942-1948, 1995.
    Kennedy, J. and Eberhart, R. A discrete binary version of the particle swarm algorithm.IEEE International Conference on Systems,Man,and Cybernetics, 5, 4104-4108,1997.
    Laporte, G., Mesa, J. A. and Ortega, F. A. Optimization methods for the planning of rapid transit systems. European Journal of Operational Research, 122(1), 1 - 10,2001.
    Levanova, T. and Loresh, M. Algorithms of ant system and simulated annealing for the p-median problem. Automation and Remote Control, 65, 431-438, 2004.
    Li, Z. and Tao, F. On determining optimal °eet size and vehicle transfer policy for a car rental company. Computers and Operations Research, 37(2), 341 - 350, 2009.
    Liu, C. M. Capacitated multi-commodity °ow model for car rental problem. Proceedings of 2005 Annual Conference and Meeting, Operations Research Society of Taiwan,2005.
    Michel, L. and Hentenryck, P. V. A simple tabu search for warehouse location. European Journal of Operational Research, 157(3), 576 - 591, 2004.
    Murray, A. and Church, R. Applying simulated annealing to planning-location models.Journal of Heuristics, 2, 31-53, 1996.
    Murray, A. T. Strategic analysis of public transport coverage. Socio-Economic Planning Sciences, 35(3), 175 - 188, 2001.
    Murray, A. T. and Wu, X. Accessibility tradeo®s in public transit planning. Journal of Geographical Systems, 5(1), 93-107, 2003.
    Nozick, L. K. and Turnquist, M. A. Integrating inventory impacts into a fixed-charge model for locating distribution centers. Transportation Research Part E: Logistics and Transportation Review, 34(3), 173 - 186, 1998.
    Nozick, L. K. and Turnquist, M. A. Inventory,transportation, service quality and the location of distribution centers. European Journal of Operational Research,129(2), 362 - 371, 2001.
    Olivo, A., Zuddas, P., Francesco, M. D. and Manca, A. An operational model for empty container management. Maritime Economics and Logistics, 7(3), 199-218,2005.
    Owen, S. H. and Daskin, M. S. Strategic facility location: A review. European Journal of Operational Research, 111(3), 423 - 447, 1998.
    Pachon, J., Iakovou, E. and Chi, I. Vehicle °eet planning in the car rental industry.Journal of Revenue and Pricing Management, 5(3), 221-236, 2006.
    Pachon, J., Iakovou, E., Chi, I. and Aboudi, R. A synthesis of tactical fleet planning models for the car rental industry. IIE Transactions, 35(9), 907-916, 2003.
    Pongchairerks, P. and Kachitvichyanukul, V. A particle swarm optimization algorithm on job-shop scheduling problems with multi-purpose machines. Asia-Pacific Jour-nal of Operational Research, 26(02), 161-184, 2009.
    Rado, F. The euclidean multifacility location problem. Operations Research, 36(3),485-492, 1988.
    Rolland, E., Schilling, D. A. and Current, J. R. An e±cient tabu search procedure for the p-median problem. European Journal of Operational Research, 96(2), 329-342, 1997.
    Salhi, S. Defining tabu list size and aspiration criterion within tabu search methods. Computers and Operations, 29, 67-86, 2002.
    Shi, Y. and Eberhart, R. Parameter selection in particle swarm optimization. Evolutionary Programming VII, 1447, 591-600, 1998.
    Shintani, K., Imai, A., Nishimura, E. and Papadimitriou, S. The container shipping network design problem with empty container repositioning. Transportation Research Part E: Logistics and Transportation Review, 43(1), 39 - 59, 2007.
    Uyeno, D. H. and Willoughby, K. A. Transit centre location-allocation decisions. Transportation Research Part A: Policy and Practice, 29(4), 263 - 272, 1995.
    White, W. W. Dynamic transshipment networks: An algorithm and its application to the distribution of empty containers. Networks, 2, 211 - 236, 1972.
    Wu, L. Y., Zhang, X. S. and Zhang, J. L. Capacitated facility location problem with general setup cost. Computers and Operations Research, 33(5), 1226 - 1241, 2006.
    YouBike. 2010. personal communication and http://www.youbike.com.tw.

    QR CODE